
Preparing and using Multi-Map collective variables

Multi-Map variables are a flexible method to accelerate changes in macromolecular shape dur-
ing MD simulations (1). The method, originally developed to describe lipid membranes and water
clusters (1), has also been successfully applied to protein conformational transitions as well (2).

This article describes in detail how to prepare and analyze simulations using Multi-Map vari-
ables. The following resources are used:

1. A biomolecular system already prepared and equilibrated for MD simulation: the two exam-
ples shown below are a lipid bilayer in coarse-grained resolution and a protein in atomistic
resolution.

2. Two or more volumetric maps that identify distinct shapes of the system of interest. For
the bilayer, these may be computed following a chosen deformation shape, wherease for the
protein, they will be computed from experimental structures.

3. VMD version 1.9.4a49 or later (3) (i.e. including the Colvars module (4) version 2020-10-22
or later).

4. NAMD version 2.14 or later (5), to run MD simulations with biasing forces acting on Multi-
Map variables.

5. The MDAnalysis library (6; 7), which provides utility functions to manipulate atomic coor-
dinates and volumetric maps used in the Python code here shown.
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1 Setting up a Multi-Map variable

Given the atomic coordinates, X = (x1,x2, . . .xN), and a small set of 3D volumetric maps, φk(x),
the Multi-Map variable is defined as:

ξ (X) =
K

∑
k=1

ξk

N

∑
i=1

φk(xi) (1)

where the first sum is done over all volumetric maps, and the second sum over the atoms that fit in
that map. The coefficients ξk are chosen before the simulation, one for each map: a typical choice
is, for example, ξk = k. The Multi-Map variable ξ is thus a linear superposition of multiple terms,
each quantifying the similarity between the corresponding map φk(x) and the atomic coordinates
X. It is also technically possible to use non-linear functions instead of fixed coefficients ξk, but
this has not been investigated yet.

1.1 Selecting atoms.

To define the Multi-Map variable, the relevant atoms must be selected. For portability reasons it is
not advisable to use atom selection keywords available in VMD, or in the Colvars module. This is
due to the fact that the Multi-Map implementation in NAMD leverages the GridForces feature of
NAMD (8) to perform input/output operations from OpenDX files and interpolate over the points
of the corresponding grid. Consistently with many other native features of NAMD, atoms for
GridForces are selected through the numeric values in selected columns of PDB files.

In the first example (lipid bilayer with 100 POPC molecules per leaflet) two PDB files are
needed to select the phosphate groups of each leaflet:

mol new popc 100.psf type psf waitfor all

mol addfile popc 100.pdb type pdb waitfor all

set all [atomselect top "all"]

$all set occupancy 0.0

$all set beta 0.0
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set upper [atomselect top "name PO4 and z > 0.0"]

$upper set occupancy 1.0

$upper set beta 1.0

animate write pdb popc 100.phosphates-upper.pdb

$all set occupancy 0.0

$all set beta 0.0

set lower [atomselect top "name PO4 and z < 0.0"]

$lower set occupancy 1.0

$lower set beta 1.0

animate write pdb popc 100.phosphates-lower.pdb

1.2 Preparing the volumetric maps: lipid bilayer.

The density maps of fluid-phase lipid bilayers contain a lot of structure, but generally not along
the bilayer plane: therefore, the starting point for a bilayer is not a 3D map but a 1D profile. Un-
dulations, contractions, and swellings are typically averaged out (i.e. not included) in 1D density
profiles of bilayers, whose resolution is determined by the fluctuations of single lipid molecules
and of the atoms therein. Density profiles for small bilayers (i.e. where spontaneous bending is
very small) may be computed in a variety of ways. Below is an example using the MDAnalysis
library.

Python code to compute the 1D number density profile.
import numpy as np

import matplotlib.pyplot as plt

import MDAnalysis

uni = MDAnalysis.Universe(’popc 100.psf’, ’popc 100.eq.coor.dcd’)

# Select phosphate groups

sel = uni.select atoms(’name PO4’)

z profile = np.arange(-40.0, 40.0, 0.4) + 0.2

n profile = np.zeros(shape=z profile.shape)

n frames = 0

for ts in uni.trajectory:

xyz, box = sel.positions, ts.dimensions[0:3]

# Wrap and center the Z coordinates

xyz[:,2] -= np.rint(np.divide(xyz[:,2], box[2])) * box[2]

xyz[:,2] -= xyz[:,2].mean()

n z, = np.histogram(xyz[:,2], range=(-40.0, 40.0),
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bins=z profile.shape[0], density=True)

n profile[:] += n z[:]

n frames += 1

n profile /= np.float(n frames)

plt.plot(z profile, n profile, ’-’)

plt.show()

The output of this script on the example trajectory (POPC bilayer) shows a distribution with two
peaks, which can be well approximated by two Gaussian functions with centers at ±21 Å and
standard deviations of 2 Å each.

From 1D profiles to 3D maps. Having obtained a 1D density profile for the group of interest
(i.e. the phosphate groups), 3D density maps of flat bilayers are generated quite easily just by repli-
cating the 1D density profile many times along a grid of (x,y) values, as wide as the bilayer being
simulated. For a map of a bilayer with an undulatory deformation, the location of the 1D profile
along the Z axis can be shifted by a 2D function z(x,y). Due to periodic boundary conditions, the
simplest starting point for z(x,y) is a sinusoidal function:

z(x,y) = Acos
(

2πx
Lx

)
(2)

where Lx is the period of the simulation cell along the X axis at equilibrium, and A is the amplitude
of the deformation in units of length; for a flat bilayer, A = 0.

Generating a 3D map φ(x) given the 1D density profile n(z) and a deformation 2D map z(x,y)
is conceptually not complicated at all, yet it can be a bit tedious due to technical details. The
script gen multimap.py automates the process considerably and allows using either functions
or tabulated maps to define z(x,y). The example below uses different options of the script to
implement the following procedure:

1. Two sets of atoms are chosen, the upper leaflet with a label “upper” and the lower leaflet
with a label “lower”; output files will be named using these labels. Matching PDB files ar
Of course, it is possible to employ a single set of maps for both leaflets: beware, however,
that the density of the upper leaflet with a largely negative deformation (A� 0) may overlap
with the density of the lower leaflet with a largely positive deformation (A� 0). For a small
added computational cost, it safer to treat the leaflets independently.

2. The 1D density profiles of the phosphate groups of each leaflets are defined as Gaussians,
with means and standard deviations given by --input-centers and “--input-sigmas”,
respectively. (Alternatively, “--input-files” allows using directly density profiles such as
those computed from the above Python script.)
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3. To make the values of the terms ∑i φ(xi) consistent for bilayers of different sizes, the depth/intensity
of each volumetric map φ(x) may be scaled automatically through “--normalize-maps”,
such that ∑i φ(xi), equals 1 when all atom positions xi are at the peak of the distribution.
By default, the number of atoms is computed as the sum of the products of the occupancy
and temperature factors (assuming that they are both 1 for each selected atom); alternatively,
“--input-num-particles” would allow setting these explicitly.

4. The dimensions of the simulation cell are defined from an existing NAMD XSC file using
the “--xsc-file” option; for a more accurate definition, an XST trajectory can be provided
to it, and the mean simulation cell over all frames will be used. Alternatively, dimensions
may also be given explicitly with “--cell”. All volumetric maps generated will have these
dimensions.

5. The 2D deformation function z(x,y) is chosen using “--deformation-function”; for ex-
ample, the keyword “map bend cosine” chooses eq. 2. (For a tabulated map, use “--deformation-map”).

6. The numbers of grid points along each dimension are defined through “--grid-npoints”:
because the functions are smooth, there is no need for very fine grids.

7. A series of deformation amplitudes A is given by “--deformation-amplitudes”: the ex-
ample here uses A =−6,−2,2,6,10 Å. The spacing of 4 Å ensures that there is reasonable
overlap between consecutive maps (remember that along the Z axis, these maps are Gaus-
sians with σ = 2 Å). Also, the set is asymmetric around zero: for a symmetric bilayer, it is
not needed to sample both positive and negative deformations, which would have the same
energy for a given absolute value |A|. It is a good idea, though, to pad the set of A values
with maps representingconfigurations slightly beyond the range considered: the fluctuations
of individual lipids/atoms can be significant, and it is necessary to lay down density maps
for any positions that they may take.

8. All map file names will start with the same label “--output-prefix”. Optionally, VMD and
NAMD scripts are also written with “--vmd-script” and “--namd-script”. This is done
not only to avoid additional typing (which we all prefer, don’t we?), but also for more subtle
technical reasons as well: VMD and NAMD handle volumetric maps in entirely different
ways, thus the Colvars configuration used also needs to change slightly to accommodate
these differences. This point is discussed in more detail in the section 2.

Putting it all together, the following command generates the necessary input files (minus the
PDB files):
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Generate a set of 3D sinusoidal maps for a bilayer.
python3 gen multimap.py \

--input-labels upper lower \
--input-pdb-files popc 100.phosphates-{upper,lower}.pdb \
\
--input-centers 21.0 -21.0 --input-sigmas 2.0 2.0 \
--normalize-maps \
--xsc-file popc 100.eq.xst \
\
--deformation-function map bend cosine \
--grid-npoints 50 50 100 \
--deformation-amplitudes -6.0 -2.0 2.0 6.0 10.0 \
--output-prefix cosine \
--vmd-script cosine.vmd --namd-script cosine.namd

When running the “gen multimap.py” script, for each of the two selections the matrix of
cross-correlation coefficients is printed on the standard output:

Cross-correlation matrix between maps:

(elements far from the diagonal should be small)

[[1.000 0.646 0.309 0.194 0.144]

[0.646 1.000 0.646 0.309 0.195]

[0.309 0.646 1.000 0.646 0.309]

[0.194 0.309 0.646 1.000 0.646]

[0.144 0.195 0.309 0.646 1.000]]

which shows that adjacent maps are inded very similar to each other (64.6% cross-correlation) at
the chosen resolution of 2 Å, but also that the mutual cross-correlation gradually decays for maps
with increasingly different deformations. The combination of these two features is essential for
properly sampling a continuous pathway of molecular configurations across the different bilayer
shapes.

The ability of a Multi-Map variable to properly account for movement between shapes requires
that the selected atoms or molecules only move in regions where the density of at least one map is
not zero. Therefore, in the auto-generated script “cosine.namd” a restraint on the Z coordinate of
the bilayer is also included, based on a distanceZ-type variable named “com dist”.
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1.3 Preparing the volumetric maps: protein structure.

This example makes use input files prepred in the first section of the MDFF tutorial, specifically
the “closed” and “open” structures of the adenylate kinase protein (ADK). To enable a Multi-Map
simulation for the same protein, two density maps one for each state, may be prepared:

Generate a map for each protein structure.
mol new 1ake-initial-docked autopsf.psf

mol addfile 1ake-initial-docked autopsf.pdb type pdb waitfor all

mdff sim [atomselect top all] -o 1ake.density.dx

mol new 1ake-initial-docked autopsf.psf

mol addfile 4ake-target autopsf.pdb type pdb waitfor all

mdff sim [atomselect top all] -o 4ake.density.dx

where the default resolution of the mdff sim command is used, which is fairly coarse (10 Å) to
improve the ability to simulate a smooth transition pathway. The mutual cross-correlation between
the two maps may be computed directly in VMD:

voltool correlate -i1 1ake.density.dx -i2 4ake.density.dx

...

0.7627721242997564

The above is a relatively high cross-correlation, especially considering that these are the only
two maps considered. An undesirable consequence of this fact is that fluctuations in the region
shared by the two densities φ1(x) and φ2(x) may affect the ability of the Multi-Map variable to
discriminate between “true” transitions between the two states. Possible remedies may be using
non-overlapping densities by considering only certain domains of the protein (which may be dif-
ficult for experimental density maps), or choosing Multi-Map coefficients ξ1 and ξ2 of opposite
signs, so that fluctuations in the shared region effectively cancel each other out. The latter is the
strategy adopted in ref. (2), where conformational changes of several proteins are investigated
using Multi-Map variables with coefficients ξ1,ξ2 =±1.

Using this choice of coefficients, it is possible to reuse the gen multimap.py script to generate
input scripts for VMD and NAMD:

Generate Multi-Map configuration syntax for two protein density maps.
python3 gen multimap.py \

--input-label adk \
--input-pdb-file 1ake-initial-docked autopsf-grid.pdb \
--input-map-files 1ake.density.dx 4ake.density.dx \
--normalize-map \
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--multimap-coefficients -1 1 \
--output-prefix adk-multimap \
--vmd-script adk-multimap.vmd --namd-script adk-multimap.namd

where the option “--multimap-coefficients” overrides the default choice of ξk = k.
As in the bilayer example, a center-of-mass restraint is included in the auto-generated script

“adk-multimap.namd”. Because input 3D map files were provided, the gen multimap.py script
assumed that the object under consideration (a protein in this case) can move freely in all three
dimensions. Therefore, a restraint based on an isotropic distance-type variable is included; the
position of the center of mass is by default the origin (0,0,0), but it may be redefined via the Tcl
variable “com pos”.

Also included is a restraint on an orientation-type variable, called “ori”. This restraint is cen-
tered around an orientation that correspond to the atoms being aligned with the reference structure,
avoiding loss of alignment with all maps simultaneously. Because this variable specifically cannot
be computed in parallel in NAMD, it is generally recommended to use a much smaller selection
of atoms than those used for the Multi-Map variable (e.g. only the Cα atoms instead of a whole
protein).

2 Syntax of Multi-Map variables explained: VMD vs. NAMD

This section explains the syntax of the VMD and NAMD scripts generated by gen multimap.py.
The basic building block of a Multi-Map variable is the “mapTotal” function:
https://colvars.github.io/colvars-refman-namd/colvars-refman-namd.html#sec:cvc

map total

As its name implies, this function computes the total value of a map, ∑i φ(xi), and allows it to be
treated as a collective variable. The simple example included in the link above defines the number
of water molecules in a cavity, based on a single map that describes the shape of the cavity itself.
A Multi-Map variable is nothing but a combination of multiple instances of mapTotal.

Because VMD and NAMD have different ways of dealing with volumetric maps, how the
mapTotal variables are defined in Colvars should be adjusted.

VMD syntax.

In VMD, volumetric maps are loaded just like atomic coordinate files, from the graphical menu or
from the command line.

Loading volumetric maps (VMD version).
mol addfile map 001.dx type dx waitfor all
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mol addfile map 002.dx type dx waitfor all

Once these are loaded, the Colvars module can refer to these maps by numeric index (starting at
0), consistently with their use in the rest of VMD, e.g. by the voltool command. An example
Colvars configuration suitable for use in VMD is the following.

Turning volumetric maps into collective variables (VMD version).
colvar {

name xi

mapTotal {
name map 001

componentCoeff 1.0

mapID 0

atoms {
atomsFile atoms.pdb

atomsCol O

}
}
mapTotal {

name map 002

componentCoeff 2.0

mapID 1

atoms {
atomsFile atoms.pdb

atomsCol O

}
}

}

In here, a collective variable named xi is built from two mapTotal functions named map 001 and
map 002. The maps loaded in VMD’s memory are accessed by Colvars using the values of mapID
and the atoms assigned to each map are chosen based on non-zero values of the occupancy column
in the file atoms.pdb. The coefficients ξk in eq. 1 are defined by the componentCoeff keywords.
When the variable is computed, the values of each map at the coordinates of the atoms φ(xi) are
computed: this is carried out using linear interpolation between the grid points, as is done by the
interpvol selection property. If a periodic cell is defined, the atomic coordinates xi are wrapped
inside it internally to Colvars (so that they all fit inside the map’s domain) and the resulting values
of φ(xi) are summed up inside the Colvars module.
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NAMD syntax.

Turning our attention to NAMD, things change slightly because (i) NAMD uses a different syntax
to load volumetric maps, and (ii) a larger chunk of the computation is carried out by NAMD directly
instead of using Colvars code. This is done to maximize parallel efficiency: NAMD computes the
sum over atoms ∑i φ(xi) in parallel, while Colvars carries out the much simpler sum over the
maps, ∑k (. . .). (This capability was introduced into NAMD starting from version 2.14 as part of
the implementation of the mapTotal function (1); previous versions could compute the φ(xi) (8),
but did not add them up.)

The GridForces commands in NAMD are used to load each map, assigning an unique label to
each one. The same labels are then used inside Colvars to reference the maps.

Loading volumetric maps (NAMD version).
mGridForcePotFile map 001 map 001.dx

mGridForceFile map 001 atoms.pdb

mGridForceCol map 001 O

mGridForceChargeCol map 001 B

# Disable this grid’s scale factors; the Colvars module will compute the force

mGridForceScale map 001 0.0 0.0 0.0

# Continuously interpolate between periodic images of the map

mGridForceCont1 map 001 yes

mGridForceCont2 map 001 yes

mGridForceCont3 map 001 yes

# Do not raise an error if the grid extends beyond the simulation cell

mGridForceCheckSize map 001 off

mGridForcePotFile map 002 map 002.dx

mGridForceFile map 002 atoms.pdb

mGridForceCol map 002 O

mGridForceChargeCol map 002 B

mGridForceScale map 002 0.0 0.0 0.0

mGridForceCont1 map 002 yes

mGridForceCont2 map 002 yes

mGridForceCont3 map 002 yes

mGridForceCheckSize map 002 off

As implied by the keywords above, the selection of atoms is carried out using NAMD keywords.
GridForces’ syntax requires both a “magnitude” flag via mGridForceCol and a “charge” flag via
mGridForceChargeCol. When a homogeneous set of particles is used, it is convenient to just use
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1 for both fields in the PDB files.
The keyword mGridForceScale is very important: if given non-zero values, a traditional Grid-

Forces simulation is carried out (8): it is necessary to assign zero to disable GridForces and enable
instead a Multi-Map simulation (1). The flags mGridForceContX and mGridForceCheckSize are
specific to an intrinsically periodic system like a lipid bilayer. When a constant-pressure simulation
is carried out and the simulation cell expands beyond the boundaries of the maps, rather having
atoms “fall off the map” it is much more robust to continuously interpolate between periodic im-
ages of the maps themselves, as the GridForces syntax allows.

Do fluctuations in the simulation cell size affect simulation results? Unfortunately yes: for
historical consistency with the original GridForces method (8), volumetric maps are defined in
absolute coordinates, and the sizes of their unit cells are not guaranteed to match the sizes of the
simulation cell.

The safest approach to avoid inaccuracies or discontinuities is using 2D deformation func-
tions z(x,y) whose slope is small or zero at the edges of the simulation cell. For sinusoids, using
cos(2πx/Lx) is a much better choice than sin(2πx/Lx). If, for example, the simulation cell con-
tracted by 1% compared to its equlibrium width Lx , this fluctuation would cause the following
changes at the cell’s edges:∣∣∣∣cos

(
2πLx

Lx

)
− cos

(
2π0.99Lx

Lx

)∣∣∣∣ ' 0.00049∣∣∣∣sin
(

2πLx

Lx

)
− sin

(
2π0.99Lx

Lx

)∣∣∣∣ ' 0.031

Therefore, there is a much smaller discontinuity when using a deformation function that is flat at
the cell’s edges (i.e. cos(. . .)) than one with a finite slope (i.e. sin(. . .)).

For 2D deformation functions z(x,y) that are not periodic to begin with, the simplest choice
is generally to make them periodic by gradually switching them to zero near the cell’s edges, i.e.
assuming on average a flat bilayer shape as a boundary condition. Based on what shown above,
this choice is not only the simplest but also the most robust one.

Having defined both the maps and the atom selections through NAMD flags, the Colvars con-
figuration is much simplified:

Turning volumetric maps into collective variables (NAMD version).
colvar {

name xi

mapTotal {
name map 001

componentCoeff 1.0

mapName map 001
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}
mapTotal {

name map 002

componentCoeff 2.0

mapName map 002

}
}

When the variable xi is computed, Colvars will simply retrieve the pre-computed value of each
mapTotal function from NAMD. It should be noted that the values of φ(xi) are computed by
default with a cubic interpolation between the neighboring grid points. Therefore, Multi-Map
variables computed by VMD and NAMD over the same atomic configuration will be very similar,
but not identical.

Key takeaways.

The implementations of the Multi-Map variable in VMD and NAMD differ in several ways:

• The VMD implementation loops over atoms internally to the Colvars module (thus requiring
selection and weights specified within it), whereas the NAMD implementation loops over
atoms externally to Colvars: atom selection syntax and parallel performance are different.

• In VMD, the value of a volumetric map is interpolated linearly over the neighboring grid
points, whereas in NAMD the interpolation is cubic (more accurate) and is provided by the
GridForces code.

• In VMD, periodic images of a map are not considered; in NAMD, it is possible to interpolate
between adjacent periodic images of the same map (again, using the existing GridForces
options).

3 Interactive visualization with the Colvars Dashboard

The Colvars Dashboard is a graphical user interface for the Colvars module, implemented as a
VMD plugin. It is used here to visualize how various atomic properties (in this case, atomic coor-
dinates and volumetric maps) are used to compute a collective variable. The features exemplified
here are shown using either the bilayer or the protein example, but may be used with either system
interchangeably.
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3.1 Loading the system and defining the variable.

The molecular structure of the biilayer and an equilibrium MD trajectory may be loaded from the
VMD GUI following the usual steps, or using the commands below.

mol new popc 100.psf type psf

mol addfile popc 100.eq.coor.dcd type dcd waitfor all

The bilayer was pre-equilibrated at a temperature of 300 K and a pressure of 1 atm semi-isotropically
applied to the lateral and transverse directions. Shown in the snapshot below are the bilayer and its
two nearest periodic images along the X axis (shown in “Ghost” material):

Next, the Multi-Map collective variable needs to be defined, such that the Colvars module can
compute it by accessing directly the atomic coordinates and volumetric maps from VMD’s mem-
ory. For a single-map variable, this definition may be done from scratch inside the Dashboard
GUI. However, it is good to remember that we plan on using multiple maps, and there are sig-
nificant technical differences between VMD and NAMD. Manual definition from scratch for this
variable is definitely possible, but a bit tedious. To automatically define the variable, one can run
the VMD script generated by the gen multimap.py tool:

source cosine.vmd

which automates the tasks of (i) loading the maps, (ii) defining the Multi-Map collective variable,
and (iii) defining single-map variables useful to monitor the relative contribution of each map. The
latter ones are particularly useful for plotting and visualization.
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3.2 Plotting the trajectory of Multi-Map variables.

The Dashboard window (shown right below) can be accessed under the “Extensions/Analysis”
menu:

In the central region of the window, the values of the collective variables currently defined are
shown. These are the Multi-Map collective variable, named “multimap”, and the single-map
variables, named “upper 001” through “upper 005” for the upper-leaflet maps (and similarly
for the lower leaflet. By default, the values correspond to the atomic configuration currently
shown in the VMD Display window (see the “Track VMD frame” checkbox). Optionally, the
values of “multimap” over the entire trajectory loaded in memory can be plotted. First, the vari-
able “multimap” may be selected from the list by simply clicking on it, and then clicking on the
“Timeline plot” button:
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which shows the variable to be in equilibrium around an approximate value of 11 (dimensionless
units).

The contributions of the individual maps to the Multi-Map variable can also be shown over
time. Multiple variables can be selected in the Dashboard by holding the “Shift” key while click-
ing on their names:
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and then using again the “Timeline plot” button. For the single-map variables named “upper 001”
through “upper 005”, this plot shows five stable trajectories distinct different equilibrium values:
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This correlates well with how the individual maps were generated: the two largest contributions
are from “upper 002” and “upper 003”, which model a nearly-flat leaflet with cosine-shaped de-
formations peaking at −2 and +2 Å, respectively. Next in order of relative importance are the two
maps “upper 001” and “upper 004” correspond to stronger cosine-shaped deformations peaking
at −6 and +6 Å. Lastly, the map “upper 005” describes the shape of a strongly bent bilayer (a
cosine of 10 Å in amplitude) and its contribution is the lowest.

You have certainly noticed that the above plots are not optimal for being used as article figures
or presentation slides: consider using the “File” menu of the “Multiplot” window to export the time
series of the variables for further analysis. The most useful application of the Multiplot window
is interactive visualization: for more information, see the visualization section of the Dashboard
documentation.

3.3 Visualizing the maps associated to a variable.

The Colvars Dashboard can automate the creation of graphical representations of the atoms and
the volumetric maps. First, one can use the the “Settings” tab of the Dashboard’s main window
to customize the representation parameters of the maps. For example, new maps may be shown
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with a “Transparent” material, a contour level equal to 80% of the range between the minimum
and maximum values of the map, and enabling the display of two adjacent periodic images along
the X axis):

To choose which maps to display, either the Multi-Map variable or a group of individual maps may
be selected, as done earlier to display their values in the Multiplot window. For example, the five
maps “upper 001” through “upper 005” are selected and displayed using on the “Show volmaps”
button from the “Actions” tab:

18



which shows the five selected maps as contour surfaces, each with a distinct color (chosen auto-
matically) and a box representing their boundaries. Due to how the volumetric map’s box is drawn
in VMD, a gap appears between this box and its periodic images: the width of this gap is exactly
one grid spacing (half on either side). During a simulation, for any coordinates x in this region
the value of map φ(x) would be computed by interpolation between its values at the two adjacent
boundaries.

3.4 Visualizing atoms and atomic gradients of map-based variables

To illustrate the ability of the Colvars Dashboard to visualize atomic properties associated with
collective variables (i.e., atom positions and gradients), we return to the ADK protein example:

Load ADK input files and Multi-Map definition into VMD.
mol new 1ake-initial-docked autopsf.psf

mol addfile 1ake-initial-docked autopsf.pdb type pdb waitfor all

mol addfile 4ake-target autopsf.pdb type pdb waitfor all

source adk-multimap.vmd

Firstly, the volumetric maps can be shown as described in the previous section. Secondly,
from the “Settings” tab of the Dashboard’s main window it is useful to select which atoms to
display alongside them. The list of atoms associated to each colvar is automatically retrieved by
the Dashboard window from the Colvars module’s memory, and does not need to be specified
manually. However, because Multi-Map variables are typically defined over many atoms, the
simultaneous representation of their positions and gradients may be rather crowded. It is preferable
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to define a relatively small selection of relevant atoms, e.g. the Cα atoms of the “lid” domain
(approximately residues 122 to 156) :

Upon returning to the “Actions” tab, the “Show atoms” and “Show gradients” buttons can
be used to visualize the contribution of these atoms to the dynamics of the Multi-Map variable:
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The above figure shows that for the atoms in the “lid” domain, there are two alternative path-
ways to increase the value of the Multi-Map variable ξ : (i) atoms moving toward regions where
both φ1(x) and φ2(x) are zero (i.e. away from any density contour), and (ii) atoms moving toward
the region where φ2(x) is non-zero (i.e. toward the density lobe shown in red, near the upper right
corner). The former represents any movements away from both the initial and target shapes, and
the latter a conformational change toward the target shape.

Thanks to being located in a region where φ1(x) and φ2(x) overlap but are not identical, gradi-
ents of atoms between the initial and target shapes appear larger than the others, and are likely
to produce physically relevant transitions when a force is applied on the Multi-Map variable.
Nonetheless, it is good to keep in mind that any force applied will also have some components
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leading away from either shape. The use of restraints can greatly alleviate but never resolve this
issue completely. Careful examination of the simulated trajectory is an essential requirement for
PMF computations along this type of variable.

References

[1] Giacomo Fiorin, Fabrizio Marinelli, and José D. Faraldo-Gómez. Direct derivation of free en-
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For questions or comments about:

• technical details of the protocols shown here, contact the VMD or NAMD mailing lists;

• code implementation, open an issue on the Colvars GitHub repository;

• this article specifically, contact giacomo.fiorin@gmail.com.
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