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1 Overview

In molecular dynamics simulations, it is often useful to reduce the large number of degrees of
freedom of a physical system into few parameters whose statistical distributions can be analyzed
individually, or used to define biasing potentials to alter the dynamics of the system in a controlled
manner. These have been called ‘order parameters’, ‘collective variables’, ‘(surrogate) reaction
coordinates’, and many other terms.

Here we use primarily the term ‘collective variable’, often shortened to colvar, to indicate any
differentiable function of atomic Cartesian coordinates, xi, with i between 1 and N, the total number
of atoms:

ξ (t) = ξ (X(t)) = ξ (xi(t),x j(t),xk(t), . . .) , 1≤ i, j,k . . .≤ N (1)

This manual documents the collective variables module (Colvars), a software that provides an
implementation for the functions ξ (X) with a focus on flexibility, robustness and high performance.
The module is designed to perform multiple tasks concurrently during or after a simulation, the
most common of which are:

• apply restraints or biasing potentials to multiple variables, tailored on the system by choosing
from a wide set of basis functions, without limitations on their number or on the number of
atoms involved;

• calculate potentials of mean force (PMFs) along any set of variables, using different en-
hanced sampling methods, such as Adaptive Biasing Force (ABF), metadynamics, steered
MD and umbrella sampling; variants of these methods that make use of an ensemble of
replicas are supported as well;

• calculate statistical properties of the variables, such as running averages and standard de-
viations, correlation functions of pairs of variables, and multidimensional histograms: this
can be done either at run-time without the need to save very large trajectory files, or after a
simulation has been completed (post-processing).

Note: although restraints and PMF algorithms are primarily used during simulations, they are
also available in VMD to test a new input for a simulation, or to evaluate the relative free energy of
a new structure based on data from a previous calculation. Options that only have an effect during
a simulation are also included for compatibility purposes.

Detailed explanations of the design of the Colvars module are provided in reference [1]. Please
cite this reference whenever publishing work that makes use of this module, alongside any other
publications for specific features being, according to the usage summary printed when running a
Colvars-enabled MD simulation or analysis.

Using the Colvars module in VMD Within VMD [2], the Colvars module can be accessed in
two ways:

• Using the Colvars Dashboard, an intuitive interface to the Colvars module, to easily define
and analyze collective variables, but not biases (section 3).

• Using the full-featured Tcl scripting interface as documented in section 4.2; see in particular
the example in section 4.2.5.
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2 Writing a Colvars configuration: a crash course

The Colvars configuration is a plain text file or string that defines collective variables, biases,
and general parameters of the Colvars module. It is passed to the module using back-end-specific
commands documented in section 4. Writing the configuration fora collective variable in VMD is
made much easier using the Dashboard and its configuration editor (section 3). However, note
that the Dashboard does not handle biases: if necessary, they should be managed separately
using the scripting interface.

Example: steering two groups of atoms away from each other. Now let us look at a complete,
non-trivial configuration. Suppose that we want to run a steered MD experiment where a small
molecule is pulled away from a protein binding site. In Colvars terms, this is done by applying a
moving restraint to the distance between the two objects. The configuration will contain two blocks,
one defining the distance variable (see section 5 and 5.3.1), and the other the moving harmonic
restraint (7.8). Note that in VMD, no biasing forces are applied, but biases may be useful in the
context of an analysis script, e.g. to collect histograms or to compute bias energies.

colvar {
name dist
distance {

group1 { atomNumbersRange 42-55 }
group2 { indexGroup C-alpha_15-30 }

}
}

harmonic {
colvars dist
forceConstant 20.0
centers 4.0 # initial distance
targetCenters 15.0 # final distance
targetNumSteps 500000

}

Reading this input in plain English: the variable here named dist consists in a distance function
between the centers of two groups: the ligand (atoms 42 to 55) and the α-carbon atoms of residues
15 to 30 in the protein (segment name PR). To the “dist” variable, we apply a harmonic potential of
force constant 20 energy unit /length unit2, initially centered around a value of 4 length unit, which
will increase to 15 length unit over 500,000 simulation steps.

The atom selection keywords are detailed in section 6.

Example: using multiple variables and multiple biasing/analysis methods together. A more
complex example configuration is included below, showing how a variable may be constructed by
combining multiple existing functions, and how multiple variables or multiple biases may be used
concurrently. The colvar indicated below as “d” is defined as the difference between two distances
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(see 5.3): the first distance (d1) is taken between the center of mass of atoms 1 and 2 and that
of atoms 3 to 5, the second (d2) between atom 7 and the center of mass of atoms 8 to 10 (see
6). The difference d = d1−d2 is obtained by multiplying the two by a coefficient C =+1 or C =−1,
respectively (see 5.18). The colvar called “c” is the coordination number calculated between atoms
1 to 10 and atoms 11 to 20. A harmonic restraint (see 7.8) is applied to both d and c: to allow
using the same force constant K, both d and c are scaled by their respective fluctuation widths wd
and wc. A third colvar “alpha” is defined as the α-helical content of residues 1 to 10 (see 5.8.1).
The values of “c” and “alpha” are also recorded throughout the simulation as a joint 2-dimensional
histogram (see 7.13).

colvar {
# difference of two distances
name d
width 0.2 # estimated fluctuation width
distance {

componentCoeff 1.0
group1 { atomNumbers 1 2 }
group2 { atomNumbers 3 4 5 }

}
distance {

componentCoeff -1.0
group1 { atomNumbers 7 }
group2 { atomNumbers 8 9 10 }

}
}

colvar {
name c
coordNum {

cutoff 6.0
group1 { atomNumbersRange 1-10 }
group2 { atomNumbersRange 11-20 }
tolerance 1.0e-6
pairListFrequency 1000

}
}
colvar {

name alpha
alpha {

psfSegID PROT
residueRange 1-10

}
}
harmonic {

colvars d c
centers 3.0 4.0
forceConstant 5.0
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}

histogram {
colvars c alpha

}
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3 The Colvars dashboard

The Colvars Dashboard is a graphical interface for interactive visualization and refinement
of collective variables aided by molecular structures and trajectories. It is accessible in VMD’s
Main Menu under “Extensions/Analysis/Colvars Dashboard”. Throughout the interface, keyboard
shortcuts for common operations are indicated in square brackets. Context menus in the colvar
and bias tables can be accessed using either right click or Control-click.

3.1 A mini-tutorial

Here are the steps for a quick first tour of the Dashboard:

1. load an MD trajectory into VMD;

2. open the Dashboard;

3. click “New” to create a new collective variable;

4. in the Editor window, click “Apply” to accept the default template;

5. in the Dashboard window, click “Show atoms” to display the two atom groups involved in this
distance coordinate;

6. click “Timeline plot”;

7. click anywhere in the timeline plot to navigate in the trajectory.

Alternately, use the Automatic colvars features in the Actions tab.
Now, clicking “Edit” in the Dashboard window (or right-clicking on a colvar in the list view), you

can modify the collective variable to reflect interesting geometric properties of the system. The
power of the collective variables approach lies in the variety of geometric functions (“components”)
and their combinations. The editor window provides a number of helpers to make it easy and quick
to define the most relevant variables. See section 3.5 for details.

3.2 The Dashboard window

The Dashboard window displays a table listing currently defined variables, and their values for
the current frame indicated at the bottom of the window. By default the frame is updated to track
VMD’s currently displayed frame, but that can be changed by toggling the “Track frame” checkbox,
e.g. to animate the trajectory without recomputing expensive variables. Vector-values variables
can be expanded to list their scalar elements. This is necessary when individual scalar quantities
have to be selected for plotting. Other operations act on variables as a whole and ignore specific
selected scalar elements. Right-clicking in the table brings up a context menu with specific actions
for the selected variables.

9



Buttons above the table allow for general operations on the state of the Colvars module. Below
the table, the Actions tab allows operations on selected variables, while the Settings tab offers
advanced settings for the various visualizations.

If variables are modified, added or deleted by an external script, hit “Refresh” or press F5
to update the displayed variables and values. Starting the Dashboard also enables trajectory
animation using the left/right arrow keys within VMD’s graphical window. Atomic coordinates can
be modified using VMD’s “Mouse/Move” functions, and the Colvars module can then be updated
by pressing F5 directly from the graphical window.

A dropdown list allows for changing the current unit system if no variables are defined (see
section 4.1). When changing units, it is strongly recommended to check the configuration for all
colvars to ensure that all quantities are expressed in the desired set of units.

The Colvars Module interacts with one VMD Molecule at a time. At the bottom of the Actions
tab, a dropdown lets the user change which VMD molecule is associated with the Colvars module.
Internally, changing it means recording the configuration of currently defined colvars, deleting the
current instance of the Colvars module, creating a new one linked to the target molecule, and
applying the saved configuration. Beware of incompatible colvar definitions, such as atom groups
listing atom IDs that exist in one molecule, but not the other. Auto-updating selections (see below)
can be used to adapt the colvar definitions to a different system using VMD selection texts.

3.3 Loading / Saving configuration files

This saves the current configuration of the colvars Module to a file. This includes comments
found in the input, general parameters of the Colvars Module, the collective variables themselves,
and collective variable biases. The resulting configuration file can be read by Colvars, either back
in VMD, or within a supported MD engine.

3.4 Automatic colvar generators

The Actions tab offers two buttons to generate sets of colvars from the current VMD session:

• "protein auto-colvars" creates variables describing classic quantities used to describe protein
structures;

• "colvars from VMD labels" creates variables based on visible labels (Bonds, Angles, Dihe-
drals) for the current molecule (see Molecule selector in the same tab). Such labels can be
created by setting the label mode with the key 2, 3, or 4, and picking atoms with the mouse.

These automatically generated colvars can be used as-is, or customized using the configura-
tion editor (Edit in the context menu, or in the Actions tab).

3.5 The configuration editor
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The configuration editor can be started with the “Edit” or “New” buttons. Using the “Edit” but-
ton, the configuration of selected variables is loaded, and those variables will be replaced when
applying the new configuration.

The editor window offers links to online documentation, as well as helpers to write correct
configuration files.

As a first step, the most useful helper is the collection of template files. Some parameters
that must be supplied are indicated by the symbol @. Colvar templates can be inserted at the
beginning of the configuration, whereas “component” templates define basis functions that belong
inside a colvar block. Templates are indented using 4 spaces per level to indicate their position
in the nested structure of the configuration: general options, colvars and biases at level 0, bias
and colvar parameters like components at level 1, component parameters such as atom groups at
level 2, and atom group parameters at level 3.

The next helper buttons allow importing atom selections from VMD, either typing a VMD atom
selection text, by copying the selection of an existing graphical representation, or by inserting the
list of atoms currently labeled in VMD using the “Pick atom” feature. Atom selections should be
inserted within an atom group block, within a component block (such as distance). By default
atom selections are preceded with a comment line marking them as auto-updating. This instructs
the Dashboard to update the list of atoms whenever the configuration is applied, that is, when it is
edited, when the file is loaded by the Dashboard, or when changing the VMD molecule linked to
Colvars. This is useful when working across systems with different atom numberings, but topolo-
gies that make the relevant atom groups identifiable using VMD selection texts. Special fields
(O, B, and user) may be used, as well as atom positions (e.g. z > 0). If the selection text is
modified manually, the atom list will be updated when applying the new configuration. This auto-
updating behavior can be disabled by removing the special comment line or altering the keywords
“auto-updating selection”.

Note that atom lists are not auto-updated:

1. when changing frame within the same molecule (animating a trajectory);

2. when the configuration is read by the Colvars module outside of VMD (eg. within an MD
engine).

The “Insert labeled...” button combined with the selection box allows for inserting components
matching VMD’s geometry measurements: Bonds (distances), angles, and dihedrals. Hidden
labels are not used for inserting components.

3.6 Plotting and visualizing collective variables

Timeline plots show the selected variables as a function of time. A vertical bar indicates the
current frame, which can be changed either using VMD’s trajectory animation controls, or directly
in the plot window by clicking the mouse inside the graph, or using the keyboard left/right arrows.
Shift+arrow steps by 10 frames for faster animation, and Ctrl+arrow steps over 50 frames. The
Home/End keys jump to the first and last frames, respectively. The up/down arrows operate a
zoom/unzoom along the time axis. Visible data can be fitted vertically using the h key. All data can
be fitted horizontally using the h key.
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Pairwise scatterplots are useful to identify correlation between variables. To create a pairwise
plot, select exactly two scalar variables (or scalar components of vector variables), and click “Pair-
wise plot”. Frames are represented by circles, and lines connect consecutive frames. The blue
dot tracks the current frame: clicking a circle jumps to the corresponding frame. Arrow keys and
Home/End animate the trajectory as in the timeline plot.

Histogram displays a histogram of the selected scalar variable over the trajectory, using approx-
imately the number of bins specified in the Settings tab (adjusted after selecting a round number
for the bin width). The current value of the colvar is indicated by a vertical bar. Clicking anywhere
in the plot jumps to the frame with the nearest value of the colvar. Keyboard navigation of the tra-
jectory is similar to the other plots, except that the trajectory is traversed according to colvar values
rather than frame numbers. This enables exploration of frames corresponding to a neighborhood
of colvar values, even when they are not contiguous in time.

“Show atoms” creates representations of the atoms involved in the definition of the selected
colvars. Each atom group is shown in a different color. “Show gradient” is available for scalar
variables only. It creates a graphical representation of the atomic gradients of the selected vari-
ables, visualizing how the value of the collective variable would vary in response to a change in
atomic coordinates. The graphical representation of the gradients is controlled by parameters in
the Settings tab. Vectors representing the gradient are rescaled as indicated by the radio buttons
Max. vector norm and Scaling factor. Max. vector norm rescales gradients so that the largest vec-
tor component of each colvar’s gradient is represented by an arrow of the specified length, in Å.
Scaling factor rescales gradients by the specified factor, divided by the colvar’s width parameter
(1 by default, see 5.21). This use of width makes it easier to compare the gradients of collective
variables that are not commensurate. The scaling factor has the unit ∗L/(cv/width), where L is the
current length unit, and cv represents the natural unit of the collective variable. By default width is
unity, but (cv/width) may be seen as dimensionless if width is expressed in cv units.

The Dashboard offers visualizations for specific types of variables:

• Variables that represent rotation operations (as unit quaternions), such as those based on
an orientation component, can be displayed by right-clicking on them in the colvar table.
This creates a representation of the rotation as an arrow representing its axis, and two arms
separated by the angle of the rotation, between 0 and 180 degrees.

• For variables that are computed based on volumetric maps, representations of the related
maps can be created using the "Show volmap" button, or again through a specific entry in
the context menu available via right-click.

Parameters for fine-tuning these visualizations can be set in the Settings tab.

3.7 Monitoring colvar biases in the Dashboard

The main Dashboard window features a "Biases" tab that contains a list of currently defined
biases, their current energy, and the colvars that they depend upon. A new harmonic bias acting
on a given set of colvars can be created by selecting the colvars and opening the context menu
in the colvar table (right click or control-click). A button enables creating a Timeline plot with the
energies of currently selected biases, similar to the colvar Timeline plot. Only one plot can be
active at a time. Another button creates a visualization of the biasing forces computed by the
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selected biases, similar to the gradient display for colvars. The graphical representation of forces
is controlled by the same parameters as the gradients, shown in the Settings tab. The difference
is the scaling factor unit, which is Ångström per Colvars force unit (that is, Ångström times Colvars
length unit per Colvars energy unit).

Note that the energy of history-dependent biases such as ABF or metadynamics may not be
updated in VMD. However, values of the bias energy from a previous simulation can be displayed
if a state file has been loaded with cv load (section 4.2), or in the case of ABF, if inputPrefix
was specified.

Hitting the Save button will save the configuration of any bias listed in this tab, except the
harmonic wall biases that are created automatically from a colvar for which the lower or upper wall
options are specified.

3.8 Plotting custom time-dependent quantities as colvars

Sometimes, important time-dependent quantities are available for a trajectory, but must be
computed by an external tool (e.g. energies from a simulation). These can be visualized alongside
colvars by taking advantage of the scripted colvar feature.

Such a custom variable can either be computed on the fly (by calling an external tool or a VMD
feature) or pre-computed and cached. For example, we can use VMD to compute the protein
solvent-accessible surface area (SASA) on the fly:

set sasa_sel [atomselect top "protein and noh"]

proc calc_user_colvar { x } {
# Follow current Colvars frame
$::sasa_sel frame [cv frame]
return [measure sasa 1 $::sasa_sel]

}

The Tcl script above should be entered into VMD’s text console, or sourced from a file. Then
we can define a colvar that will be calculated by the scripted procedure above, by entering the
following configuration as a new colvar in the Dashboad Editor Window:

colvar {
name user
scriptedFunction user_colvar
distance {

# The distance component is just a placeholder
group1 {

dummyatom (0, 0, 0)
}
group2 {

dummyatom (0, 0, 0)
}
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}
}

If the SASA computation is slow, it can be cached to make subsequent interaction responsive.
To that effect, we source the following script to pre-compute the SASA for every frame and store it
in VMD’s User field for atom 0.

set atom0_sel [atomselect top "index 0"]

for {set f 0} {$f < [molinfo top get numframes]} {incr f} {
$::sasa_sel frame $f
$::atom0_sel frame $f
$::atom0_sel set user [measure sasa 1 $::sasa_sel]

}

Then we use the following Tcl procedure to compute a custom variable that is simply equal to
the User field for atom 0 for the current frame:

proc calc_user_colvar { x } {
# Follow current Colvars frame
$::atom0_sel frame [cv frame]
return [$::atom0_sel get user]

}

This version results in extremely fast updates.
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4 Enabling and controlling the Colvars module in VMD

Here, we document the syntax of the commands and parameters used to set up and use the
Colvars module in VMD. One of these parameters is the configuration file or the configuration text
for the module itself, whose syntax is described in 4.3 and in the following sections.

4.1 Units in the Colvars module

The “internal units” of the Colvars module are the units in which values are expressed in the
configuration file, and in which collective variable values, energies, etc. are expressed in the output
and colvars trajectory files. Generally the Colvars module uses internally the same units as its
back-end MD engine, with the exception of VMD, where different unit sets are supported to al-
low for easy setup, visualization and analysis of Colvars simulations performed with any simulation
engine.

Note that angles are expressed in degrees, and derived quantities such as force constants are
based on degrees as well. Some colvar components have default values, expressed in Ångström
(Å) in this documentation. They are converted to the current length unit, if different from Å. Atomic
coordinates read from XYZ files (and PDB files where applicable) are expected to be expressed
in Ångström, no matter what unit system is in use by the back-end (VMD) or the Colvars Module.
They are converted internally to the current length unit as needed. Note that force constants
in harmonic and harmonicWalls biases (7.8) are rescaled according to the width parameter of
colvars, so that they are formally in energy units, although if width is given its default value of 1.0,
force constants are effectively expressed in energy unit /(colvar unit)2.

To avoid errors due to reading configuration files written in a different unit system, it can be
specified within the input:

• units — Unit system to be used

[ string, context: global ]

A string defining the units to be used internally by Colvars. Supported values are: real (Å,
kcal/mol), gromacs (nm, kJ/mol), metal (Å, eV), and electron (Bohr, Hartree). In VMD, the
default system of units for Colvars is VMD’s native units: real (Å, kcal/mol). However, the
units keyword will switch to a different unit system than the current one if no colvars were
defined before reading the current configuration. If colvars are already defined, units will
refuse changing the unit system to avoid making the definition of those variables erroneous
in the new system of units. If needed this precaution can be overridden using the cv units
scripting command (4.2).

4.2 Using the scripting interface to control the Colvars module

After the first initialization of the Colvars module, the internal state of Colvars objects may be
queried or modified in a VMD script:
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cv <method> arg1 arg2 ...

where <method> is the name of a specific procedure and arg1, arg2, . . . are its required and/or
optional arguments.

In VMD, the cv command is used by the Dashboard graphical interface,(3), but can be also
used in scripts or interactively from the command-line terminal (for example, in remote terminal
sessions) or in the Tk Console.

In the remainder of this section, the most frequently used commands of the Colvars scripting
interface are discussed and exemplified. For a full list of scripting commands available, see sec-
tion 8.

4.2.1 Setting up the Colvars module

The first step to using Colvars in VMD is choosing which “molecule” (i.e. which system):
because VMD can handle multiple “molecules”, the Colvars module needs to remain attached to
a specific VMD molecule. For example:

cv molid "top"

will attach the Colvars module onto the molecule currently holding the “top” status (alternatively,
you can refer to a molecule by its numeric ID in lieu of top). All following invocations of the cv
command will continue operating on the same molecule, regardless of whether other molecules
are loaded, or which one has the “top” status. The cv molid command without argument will
return the molid currently associated with Colvars.

To define new collective variables and/or biases for immediate use in the current session,
configuration can be loaded from an external configuration file:

cv configfile "colvars-file.in"

This can in principle be called at any time, if only flags internal to Colvars are being modified. In
practice, when new atoms or any new atomic properties (e.g. total forces) are being requested,
initialization steps will be required that are not carried out during a simulation. Therefore, it is
generally good practice in a simulation to change the Colvars configuration outside the scope
between segments of the same computation. However, in VMD initialization is always immediate,
allowing interactive usage by Tcl scripts or the Dashboard.

To load the configuration directly from a string the “config” method may be used:

cv config "keyword { ... }"

4.2.2 Using the Colvars version in scripts

The vast majority of the syntax in Colvars is backward-compatible, adding keywords when new
features are introduced. However, when using multiple versions simultaneously it may be useful
to test within the script whether the version is recent enough to support the desired feature. The
“version” can be used to get the Colvars version for this use:
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if { [cv version] >= "2020-02-25" } {
cv config "(use a recent feature)"

}

4.2.3 Loading and saving the Colvars state and other information

After a configuration is fully defined, the “load” method may be used to load a state file from a
previous simulation that contains e.g. data from history-dependent biases), to either continue that
simulation or analyze its results:

cv load "<oldjob>.colvars.state"

or more simply using the prefix of the state file itself:

cv load "<oldjob>"

Anything following the “.colvars.state” suffix will be stripped.
The “save” method, analogous to “load”, allows to save all restart information to a state file.

This is normally not required during a simulation if colvarsRestartFrequency is defined (either
directly or indirectly by the VMD restart frequency). Because not only a state file (used to continue
simulations) but also other data files (used to analyze the trajectory) are written, it is generally
recommended to call the save method using a prefix, rather than a complete file name:

cv save "<job>"

4.2.4 Accessing atomic data

For computational efficiency the Colvars module keeps internal copies of the numeric IDs,
masses, charges, positions, and optionally total forces of the atoms requested for a Colvars com-
putation. At each simulation step, up-to-date versions of these properties are copied from the
central memory of VMD into the internal memory of the Colvars module. In a post-processing
workflow or outside a simulation (e.g. when using VMD), this copy can be carried out as part of
the update method:

cv update

which also performs the (re-)computation of all variables and biases defined in Colvars.
For example, the current sequence of numeric IDs of the atoms processed by Colvars can be

obtained as:

cv getatomids

and their current positions as:
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cv getatompositions

This may prove useful to test the correctness of the coordinates passed to Colvars, particularly
in regard to periodic boundary conditions (6.3). There is currently no mechanism to modify the
above fields via the scripting interface, but such capability will be added in the future.

While running a simulation, or when setting one up in VMD, it is possible to examine all the
forces that were last applied by Colvars to the atoms, or are about to be applied:

cv getatomappliedforces

where the length and order of this sequence matches that provided by the getatomids method. A
simpler way of testing the stability of a Colvars configuration before or during a simulation makes
use of aggregated data, such as the energy:

cv getenergy

the root-mean-square of the Colvars applied forces:

cv getatomappliedforcesrms

or the maximum norm of the applied forces:

cv getatomappliedforcesmax

which can be matched to a specific atom via its numeric ID obtained as:

cv getatomappliedforcesmaxid

See 8.1 for a complete list of scripting commands used to manage atomic data and runtime
parameters of the Colvars module.

4.2.5 Analyzing a trajectory in VMD

One of the typical uses of Colvars in VMD is computing the values of one or more variables
along an existing trajectory. This is most easily done using the Dashboard (section 3), but can
also be done by a script, as in the example below:

# Activate the module on the current VMD molecule
cv molid top
# Load a Colvars config file
cv configfile test.in
set out [open "test.colvars.traj" "w"]
# Write the labels to the file
puts -nonewline ${out} [cv printframelabels]
for { set fr 0 } { ${fr} < [molinfo top get numframes] } { incr fr } {

# Point Colvars to this trajectory frame
cv frame ${fr}
# Recompute variables and biases (required in VMD)
cv update
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# Print variables and biases to the file
puts -nonewline ${out} [cv printframe]

}
close ${out}

4.2.6 Managing collective variables

After one or more collective variables are defined, they can be accessed with the following
syntax.

cv colvar "<name>" <method> arg1 arg2 ...

where “<name>” is the name of the variable.
For example, to recompute the collective variable “xi” after a change in its parameters, the

following command can be used:

cv colvar "xi" update

This ordinarily is not needed during a simulation run, where all variables are recomputed at every
step (along with biasing forces acting on them). However, when analyzing an existing trajectory,
e.g. in VMD, a call to update is generally required.

While in all typical cases all configuration of the variables is done with the “config” or “configfile”
methods, a limited set of changes can be enacted at runtime using:

cv colvar "<name>" modifycvcs arg1 arg2 ...

where each argument is a string passed to the function or functions that are used to compute
the variable, and are called colvar components, or CVCs (5.1). For example, a variable “DeltaZ”
made of a single “distanceZ” component can be made periodic with a period equal to the unit cell
dimension along the Z-axis:

cv colvar "DeltaZ" modifycvcs "period ${Lz}"

Please note that this option is currently limited to changing the values of the polynomial super-
position parameters componentCoeff, or of the componentExp to update on the fly, of period,
wrapAround or forceNoPBC options for components where it is relevant.

If the variable is computed using many components, it is possible to selectively turn some of
them on or off:

cv colvar "<name>" cvcflags <flags>

where “<flags>” is a list of 0/1 values, one per component. This is useful for example when
script-based path collective variables in Cartesian coordinates (5.11.3) are used, to minimize com-
putational cost by disabling the computation of terms that are very close to zero.

Important: None of the changes enacted by the “modifycvcs” or “cvcflags” methods will
be saved to state files, and will be lost when restarting a simulation, deleting the corresponding
collective variable, or resetting the module with the “delete” or “reset” methods.
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4.2.7 Applying and analyzing forces on collective variables

As soon as a colvar “xi” and its associated biasing potentials are up to date (i.e. during a MD
run, or after the respective “update” methods have been called), the force applied onto the colvar
is known and may be accessed through the getappliedforce method:

cv colvar "xi" getappliedforce

See also the use of the outputAppliedForce option to have this force be saved to file during a
simulation.

Aside from the biasing methods already implemented within Colvars (7) this force may be incre-
mented ad hoc, for example as part of a custom restraint implemented by scriptedColvarForces:

cv colvar "xi" addforce <force>

where “<force>” is a scalar or a vector (depending on the type of variable “xi”). Note that
in VMD, any forces applied via addforce do not have any effect on the movement of atoms: this
feature is only available for compatibility.

For certain types of variable, the force applied directly on a colvar may be combined with
those acting indirectly on it via the interatomic force field, making up the total force. When the
outputTotalForce keyword is enabled, or when a biasing method that makes explicit use of the
total force is enabled, the total force may be obtained as:

cv colvar "xi" gettotalforce

Note that not all types of variable support total-force computation, and the value of the total force
may not be available immediately within the same simulation step: see the documentation of
outputTotalForce for more details.

See 8.2 for a complete list of scripting commands used to manage collective variables.

4.2.8 Managing collective variable biases

Because biases depend only upon data internal to the Colvars module (i.e. they do not need
atomic coordinates from VMD), it is generally easy to create them or update their configuration
at any time. For example, given the most current value of the variable “xi”, an already-defined
harmonic restraint on it named “h_xi” can be updated as:

cv bias "h_xi" update

During a running simulation this step is not needed, because an automatic update of each bias is
already carried out.
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4.2.9 Loading and saving the state of individual biases

Some types of bias are history-dependent, and the magnitude of their forces depends not only
on the values of their corresponding variables, but also on previous simulation history. It is thus
useful to load information from a state file that contains information specifically for one bias only,
for example:

cv bias "metadynamics1" load "old.colvars.state"

or alternatively, using the prefix of the file instead of its full name:

cv bias "metadynamics1" load "old"

A corresponding “save” function is also available:

cv bias "metadynamics1" save "new"

Please note that the file above must contain only the state information for that particular bias:
loading a state file for the whole module is not allowed.

This pair of functions is also used internally by Colvars to implement e.g. multiple-walker
metadynamics (7.6.7), but they can be called from a scripted function to implement alternative
coupling schemes.

See 8.3 for a complete list of scripting commands used to manage biases.

4.3 Configuration syntax used by the Colvars module

Configuration for the Colvars module is passed using an external file, or inlined as a string
in a VMD script using the Tcl command cv config "...". Configuration lines follow the format
“keyword value” or “keyword { ... }”, where the keyword and its value must be separated by
one or more space characters. The following formatting rules apply:

• Keywords are case-insensitive; for example, upperBoundary is the same as upperboundary
and UPPERBOUNDARY); note that their string values are however still case-sensitive (e.g. names
of variables, file names).

• A long value, or a list of multiple values, can be distributed across multiple lines by using
curly braces, “{” and “}”: the opening brace “{” must occur on the same line as the keyword,
following at least one space character; the closing brace “}” may be at any position after that;
any keywords following the closing brace on the same line are not valid (they should appear
instead on a different line).

• Many keywords are nested, and are only meaningful within the specific context of another
keyword; for example, the keyword name is available inside the block of the keyword colvar
{...}, but not outside of it; for every keyword documented in the following, the “parent”
keyword that defines such context is also indicated.
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• If a keyword requiring a boolean value (yes|on|true or no|off|false) is provided without an
explicit value, it defaults to ‘yes|on|true’; for example, ‘outputAppliedForce’ may be used
as shorthand for ‘outputAppliedForce on’.

• The hash character “#” indicates a comment : all text in the same line following this character
will be ignored.

• Outside of comments, only ASCII characters are allowed for defining keywords, and the only
white-space characters supported are spaces, tabs and newlines: a warning will be printed
upon detection of non-ASCII characters in a configuration line, which include both characters
that are visibly “special”, as well as those with a very similar appearance to ASCII ones (for
instance, non-breaking spaces); common ways to identify/remove non-ASCII characters are
using the Emacs text editor, or using LC_ALL=C vi.

• Tcl syntax is generally not available inside a Colvars configuration file/string, but it is possible
to use Tcl variables or bracket expansion of commands when configuration is passed via the
command cv config "..."; for example, it is possible to convert the atom selection $sel
into an atom group (see 6.1) using cv config "atomNumbers { [$sel get serial] }".

4.4 Global keywords

The following keywords are available in the global context of the Colvars configuration, i.e. they
are not nested inside other keywords:

• colvarsTrajFrequency — Colvar value trajectory frequency

Default: 100 [ positive integer, context: global ]

The values of each colvar (and of other related quantities, if requested) are written to the file
outputName.colvars.traj every these many steps throughout the simulation. If the value is
0, such trajectory file is not written. For optimization the output is buffered, and synchronized
with the disk only when the restart file is being written.

• colvarsRestartFrequency — Colvar module restart frequency

Default: 0 [ positive integer, context: global ]

When this value is non-zero, a state file suitable for restarting will be written every these
many steps. Additionally, any other output files produced by Colvars are written as well
(except the trajectory file, which is written every colvarsTrajFrequency steps). In VMD, the
simulation step is not progressed and this parameter is effectively ignored. It is generally a
good idea to leave this parameter at its default value, unless needed for special cases or to
disable automatic writing of output files altogether. If neeed, writing of all output files can
still be triggered at any time via the save scripting function.

• indexFile — Index file for atom selection (GROMACS “ndx” format)

[ UNIX filename, context: global ]

This option reads an index file (usually with a .ndx extension) as produced by the make_ndx
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tool of GROMACS. This keyword may be repeated to load multiple index files. A group
with the same name may appear multiple times, as long as it contains the same indices
in identical order each time: an error is raised otherwise. The names of index groups
contained in this file can then be used to define atom groups with the indexGroup keyword.
Other supported methods to select atoms are described in 6.

• smp — Whether SMP parallelism should be used

Default: on [ boolean, context: global ]

If this flag is enabled (default), SMP parallelism over threads will be used to compute vari-
ables and biases, provided that this is supported by the VMD build in use.

• sourceTclFile — Tcl file to be sourced at startup

[ UNIX filename, context: global ]

This option causes the provided Tcl script file to be loaded at startup, e.g. to initialize the Tcl
callback procedures for scripted variables or biases.

4.5 Input state file

Several of the sampling methods implemented in Colvars are time- or history-dependent, i.e.
they work by accumulating data as a simulation progresses, and use these data to determine
their biasing forces. If the simulation engine uses a checkpoint or restart file (as GROMACS and
LAMMPS do), any data needed by Colvars are embedded into that file. Otherwise, a dedicated
state file can be loaded into Colvars directly.

When a dedicated Colvars state file is used, it may be in either one of two formats:

• Formatted, i.e. “text” format, which takes more space and is slower to to load/save but is also
portable across different platforms and even different simulation engines (save for changes
in physical units). This format is used by default, unless explicitly requested otherwise.

• Unformatted, i.e. “binary” format, which is both space-efficient and quick to load/save, but
requires that the same VMD build was used to write the file and that the Colvars configu-
ration remains the same. This format is supported by Colvars versions starting 2023-09-
25. Colvars state files can be written in binary format by setting the environment variable
“COLVARS_BINARY_RESTART” to 1.

In either format, the state file contains accumulated data as well as the step number at the end
of the run. The step number read from a state file overrides any value that VMD provides, and will
be incremented if the simulation proceeds. This means that the step number used internally by
Colvars may not always match the step number reported by VMD.

4.5.1 Changing configuration upon restarting.
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In some cases, it is useful to modify the configuration of variables or biases between consec-
utive runs, for example by adding or removing a restraint. Some special provisions will happen in
that case. When a state file is loaded, no information is available about any newly added variable
or bias, which will thus remain uninitialized until the first compute step. Conversely, any information
that the state file may contain about variables or biases that are no longer defined will be silently
ignored. Please note that these checks are performed based only on the names of variables and
biases: it is your responsibility to ensure that these names have consistent definitions between
runs.

The flexibility just described carries some limitations: namely, it is only supported when reading
text-format Colvars state files. Instead, restarting from binary files after a configuration change will
trigger an error. It is also important to remind that when switching to a different build of VMD, the
binary format may change slightly, even if the release version is the same.

To work around the potential issues just described, a text-format Colvars state file should be
loaded. This is the default in VMD unless the “COLVARS_BINARY_RESTART” is set to 1, and this
information is only provided here for troubleshooting purposes.

4.6 Output files

When the output prefix outputName is defined, the following output files are written during a
simulation run:

• A state file, named outputName.colvars.state, which is written at the end of the spec-
ified run, and can also be written at any time with the scripting command save (4.2.3).
This file is in plain text format by default, or in binary format if the environment variable
COLVARS_BINARY_RESTART is set to a non-zero integer. The state file can be used to continue
a simulation: unless its contents are embedded in the checkpoint file of the MD engine itself
(currently, GROMACS and LAMMPS support this), instructions for loading the Colvars state
file will be required in the simulation script (see 4.5).

• If the parameter colvarsRestartFrequency is larger than zero and the restartName prefix is
defined, a restart file is written every that many steps: this file is fully equivalent to the final
state file. The name of this file is restartName.colvars.state.

• If the parameter colvarsTrajFrequency is greater than 0 (default value: 100 steps), a trajec-
tory file, named outputName.colvars.traj, is written during the simulation. Unlike a state
file, this file is not needed to restart a simulation, but can be used for post-processing and
analysis. The format of this file is described in sec. 4.7.6.

• Additionally, certain features, when enabled, can emit output files with a specific purpose:
for example, potentials of mean force (PMFs) can be written to file to be analyzed or plot-
ted. These files are described in the respective sections, but as a general rule they all use
names beginning with the outputName prefix. Like the trajectory file, these additional files
are needed only for analyzing a simulation’s results, but not to continue it.
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4.7 File formats

This section summarizes the file formats of various files that Colvars may be reading or writing.

4.7.1 Configuration and state files.

Configuration files are text files that are generally read as input by VMD, and may be optionally
inlined in a VMD script (see 4.2.1). Starting from version 2017-02-01, changes in newline encod-
ings are handled transparently, i.e. it is possible to typeset a configuration file in Windows (CR-LF
newlines) and then use it with Linux or macOS (LF-only newlines).

Formatted state files, although not written manually, follow otherwise the same text format as
configuration files. Binary state files can only be read by the Colvars code itself.

4.7.2 Index (NDX) files

For atom selections that cannot be specified only by using internal Colvars keywords, external
index files may also be used following the NDX format used in GROMACS:

[ group_1_name ]
i1 i2 i3 i4 ...
... ... iN

[ group_2_name ]
...

where i1 through iN are 1-based indices. Each group name may not contain spaces or tabs:
otherwise, a parsing error will be raised.

Multiple index files may be provided to Colvars, each using the keyword indexFile. Two index
files may contain groups with the same names, however these must also represent identical atom
selections, i.e. the same sequence of indices including order.

Other than with GROMACS, an index group may also be generated from the VMD command-
line interface, using the helper function write_index_group provided in the colvartools folder:

source colvartools/write_index_group.tcl
set sel [atomselect top "resname XXX and not hydrogen"]
write_index_group indexfile.ndx $sel "Ligand"

4.7.3 XYZ coordinate files
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XYZ coordinate files are text files with the extension “.xyz”. They are read by the Colvars module
using an internal reader, and expect the following format:

N
Comment line

E1 x1 y1 z1
E2 x2 y2 z2

. . .
EN xN yN zN

where N is the number of atomic coordinates in the file and Ei is the chemical element of the
i-th atom. Because Ei is not used in Colvars, any string that does not contain tabs or spaces is
acceptable.

Note: all XYZ coordinates are assumed to be expressed in Å units.
An XYZ file may contain either one of the following scenarios:

(i) The file contains as many coordinates as the atoms that they are being read for: all coordi-
nates will be read from the file following the same order as the atoms appear in the selection
generated using the keywords listed in section 6. (Note that the order is guaranteed only
if a single type of selection keyword is used one or more times, and not guaranteed when
different types of selection keywords are used.)

(ii) The file contains more coordinates than needed, and it is assumed to contain coordinates
for the entire system: only coordinates that match the numeric indices of the selected atoms
are read, in order of increasing number.

XYZ-file coordinates are read directly by Colvars and stored internally as double-precision
floating point numbers (unlike VMD’s reader, which uses single precision).

4.7.4 PDB coordinate files

PDB coordinate files are read by the Colvars module using existing functionality in VMD, and
therefore follow the same format. The values of the atomic coordinates and other fields, such as
occupancy or temperature factors, are then communicated to Colvars by VMD.

PDB files may be used either as one of the available mechanisms to select atoms (see the
atomsFile keyword), or more frequently to read reference coordinates for least-squares fit align-
ment (see the refPositionsFile keyword).

To select atoms via the atomsFile keyword, the option atomsFile is required, and atoms are
selected based on either one of the following cases.

(i) All atoms with a non-zero value of the corresponding column are selected.

(ii) If and only if atomsColValue is provided, only atoms with a value of atomsCol equaling
atomsColValue are selected. This can be useful to reuse the same PDB file for generat-
ing multiple selections.

To read coordinates via the refPositionsFile keyword, there are four possible scenarios.

(i) The file contains as many coordinates as the atoms that they are being read for: all coordi-
nates will be read from the file following the same order as the atoms appear in the selection
generated using the keywords listed in section 6. (Note that the order is guaranteed only
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if a single type of selection keyword is used one or more times, and not guaranteed when
different types of selection keywords are used.)

(ii) The file contains more coordinates than needed, and it is assumed to contain coordinates
for the entire system: only coordinates that match the numeric indices of the selected atoms
are read, in order of increasing number.

(iii) If the corresponding refPositionsCol keyword is specified, only positions with a non-zero
value of the column refPositionsCol are read. This is particularly useful when all atoms
were selected via atomsFile and atomsCol, which can then be the same as refPositionsCol
for loading coordinates.

(iv) This is a special case of the previous point: if both refPositionsCol and refPositionsColValue
are specified, only atoms for which the refPositionsCol column as the value refPositionsColValue
are read.

Due to the fixed-precision PDB format, it is not recommended to use PDB files to read coordi-
nates when precision is a concern, and the XYZ format (see 4.7.2) is recommended instead.

4.7.5 Grid files: multicolumn text format

Many simulation methods and analysis tools write files that contain functions of the collective
variables tabulated on a grid (e.g. potentials of mean force or multidimensional histograms) for
the purpose of analyzing results. Such files are produced by ABF (7.3), metadynamics (7.6), mul-
tidimensional histograms (7.13), as well as any restraint with optional thermodynamic integration
support (7.2).

In some cases, these files may also be read as input of a new simulation. Suitable input files for
this purpose are typically generated as output files of previous simulations, or directly by the user
in the specific case of ensemble-biased metadynamics (7.6.5). This section explains the “multi-
column” format used by these files. For a multidimensional function f (ξ1, ξ2, . . . ) the multicolumn
grid format is defined as follows:

# Ncv
# min(ξ1) width(ξ1) npoints(ξ1) periodic(ξ1)
# min(ξ2) width(ξ2) npoints(ξ2) periodic(ξ2)
# . . . . . . . . . . . .
# min(ξNcv) width(ξNcv) npoints(ξNcv) periodic(ξNcv)

ξ 1
1 ξ 1

2 . . . ξ 1
Ncv

f(ξ 1
1 , ξ 1

2 , . . . , ξ 1
Ncv

)
ξ 1

1 ξ 1
2 . . . ξ 2

Ncv
f(ξ 1

1 , ξ 1
2 , . . . , ξ 2

Ncv
)

. . . . . . . . . . . . . . .

Lines beginning with the character “#” are the header of the file. Ncv is the number of collective
variables sampled by the grid. For each variable ξi, min(ξi) is the lowest value sampled by the grid
(i.e. the left-most boundary of the grid along ξi), width(ξi) is the width of each grid step along ξi,
npoints(ξi) is the number of points and periodic(ξi) is a flag whose value is 1 or 0 depending on
whether the grid is periodic along ξi. In most situations:
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• min(ξi) is given by the lowerBoundary keyword of the variable ξi;

• width(ξi) is given by the width keyword;

• npoints(ξi) is calculated from the two above numbers and the upperBoundary keyword;

• periodic(ξi) is set to 1 if and only if ξi is periodic and the grids’ boundaries cover its period.

How the grid’s boundaries affect the sequence of points depends on how the contents of the
file were computed. In many cases, such as histograms and PMFs computed by metadynamics
(7.6.5), the values of ξi in the first few columns correspond to the midpoints of the corresponding
bins, i.e. ξ 1

1 = min(ξi) + width(ξi)/2. However, there is a slightly different format in PMF files
computed by ABF (7.3) or other biases that use thermodynamic integration (7.2). In these cases,
it is free-energy gradients that are accumulated on an (npoints)-long grid along each variable
ξ : after these gradients are integrated, the resulting PMF is discretized on a slightly larger grid
with (npoints+1) points along ξ (unless the interval is periodic). Therefore, the grid’s outer edges
extend by width(ξi)/2 above and below the specified boundaries, so that for instance min(ξi) in the
header appears to be shifted back by width(ξi)/2 compared to what would be expected. Please
keep this difference in mind when comparing PMFs computed by different methods.

After the header, the rest of the file contains values of the tabulated function f (ξ1, ξ2, . . . ξNcv),
one for each line. The first Ncv columns contain values of ξ1, ξ2, . . . ξNcv and the last column con-
tains the value of the function f . Points are sorted in ascending order with the fastest-changing
values at the right (“C-style” order). Each sweep of the right-most variable ξNcv is terminated by
an empty line. For two dimensional grid files, this allows quick visualization by programs such as
GNUplot.

Example 1: multicolumn text file for a one-dimensional histogram with lowerBoundary = 15,
upperBoundary = 48 and width = 0.1.

# 1
# 15 0.1 330 0

15.05 6.14012e-07
15.15 7.47644e-07
. . . . . .
47.85 1.65944e-06
47.95 1.46712e-06

Example 2: multicolumn text file for a two-dimensional histogram of two dihedral angles (periodic
interval with 6◦ bins):
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# 2
# -180.0 6.0 30 1
# -180.0 6.0 30 1

-177.0 -177.0 8.97117e-06
-177.0 -171.0 1.53525e-06
. . . . . . . . .
-177.0 177.0 2.442956-06

-171.0 -177.0 2.04702e-05
. . . . . . . . .

4.7.6 Output trajectory files

The Colvars trajectory file (with a suffix .colvars.traj) is a plain text file (scientific notation
with 14-digit precision) whose columns represent quantities such as colvar values, applied forces,
or individual restraints’ energies. Under most scenarios, plotting or analyzing this file is straight-
forward: for example, the following contains a variable “A” and the energy of a restraint “rA”:

# step A E_rA
0 1.42467449615693e+01 6.30982865292123e+02

100 1.42282559728026e+01 6.20640585041317e+02
...

Occasionally, if the Colvars configuration is changed mid-run certain quantities may be added
or removed, changing the column layout. Labels in comment lines can assist in such cases: for
example, consider the trajectory above with the addition of a second variable, “B”, after 10,000
steps:

# step A E_rA
0 1.42467449615693e+01 6.30982865292123e+02

100 1.42282559728026e+01 6.20640585041317e+02
...
# step A B E_rA

10000 1.38136915830229e+01 9.99574098859265e-01 4.11184644791030e+02
10100 1.36437184346326e+01 9.99574091957314e-01 3.37726286543895e+02

Analyzing the above file with standard tools is possible, but laborious: a convenience script
is provided for this and related purposes. It may be used either as a command-line tool or as a
Python module:

>>> from plot_colvars_traj import Colvars_traj
>>> traj = Colvars_traj(’test.colvars.traj’)
>>> print(traj[’A’].steps, traj[’A’].values)
[ 0 100 ... 10000 10100] [14.246745 14.228256 ... 13.813692 13.643718]
>>> print(traj[’B’].steps, traj[’B’].values)
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[10000 10100] [0.999574 0.9995741]
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5 Defining collective variables

A collective variable is defined by the keyword colvar followed by its configuration options
contained within curly braces:

colvar {
name xi
<other options>
function_name {

<parameters>
<atom selection>

}
}

There are multiple ways of defining a variable:

• The simplest and most common way way is using one of the precompiled functions (here
called “components”), which are listed in section 5.1. For example, using the keyword rmsd
(section 5.6.1) defines the variable as the root mean squared deviation (RMSD) of the se-
lected atoms.

• A new variable may also be constructed as a linear or polynomial combination of the com-
ponents listed in section 5.1 (see 5.18 for details).

• A user-defined mathematical function of the existing components (see list in section 5.1),
or of the atomic coordinates directly (see the cartesian keyword in 5.9.1). The function is
defined through the keyword customFunction (see 5.19 for details).

• A user-defined Tcl function of the existing components (see list in section 5.1), or of the
atomic coordinates directly (see the cartesian keyword in 5.9.1). The function is provided
by a separate Tcl script, and referenced through the keyword scriptedFunction (see 5.20
for details).

Choosing a component (function) is the only parameter strictly required to define a collective vari-
able. It is also highly recommended to specify a name for the variable:

• name — Name of this colvar

Default: “colvar” + numeric id [ string, context: colvar ]

The name is an unique case-sensitive string which allows the Colvars module to identify this
colvar unambiguously; it is also used in the trajectory file to label to the columns correspond-
ing to this colvar.

5.1 Choosing a function
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In this context, the function that computes a colvar is called a component. A component’s
choice and definition consists of including in the variable’s configuration a keyword indicating the
type of function (e.g. rmsd), followed by a definition block specifying the atoms involved (see 6)
and any additional parameters (cutoffs, “reference” values, . . . ). At least one component must be
chosen to define a variable: if none of the keywords listed below is found, an error is raised.

The following components implement functions with a scalar value (i.e. a real number):

• distance: distance between two groups;

• distanceZ: projection of a distance vector on an axis;

• distanceXY: projection of a distance vector on a plane;

• distanceInv: mean distance between two groups of atoms (e.g. NOE-based distance);

• angle: angle between three groups;

• dihedral: torsional (dihedral) angle between four groups;

• dipoleAngle: angle between two groups and dipole of a third group;

• dipoleMagnitude: magnitude of the dipole of a group of atoms;

• polarTheta: polar angle of a group in spherical coordinates;

• polarPhi: azimuthal angle of a group in spherical coordinates;

• eulerPhi: Roll angle of rotation from references coordinates;

• eulerTheta: Pitch angle of rotation from references coordinates;

• eulerPsi: Yaw angle of rotation from references coordinates;

• coordNum: coordination number between two groups;

• selfCoordNum: coordination number of atoms within a group;

• hBond: hydrogen bond between two atoms;

• rmsd: root mean square deviation (RMSD) from a set of reference coordinates;

• eigenvector: projection of the atomic coordinates on a vector;

• mapTotal: total value of a volumetric map;

• orientationAngle: angle of the best-fit rotation from a set of reference coordinates;

• orientationProj: cosine of orientationProj;

• spinAngle: projection orthogonal to an axis of the best-fit rotation from a set of reference
coordinates;

• tilt: projection on an axis of the best-fit rotation from a set of reference coordinates;

• gyration: radius of gyration of a group of atoms;
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• inertia: moment of inertia of a group of atoms;

• inertiaZ: moment of inertia of a group of atoms around a chosen axis;

• alpha: α-helix content of a protein segment.

• dihedralPC: projection of protein backbone dihedrals onto a dihedral principal component.

Some components do not return scalar, but vector values:

• distanceVec: distance vector between two groups (length: 3);

• distanceDir: unit vector parallel to distanceVec (length: 3);

• cartesian: vector of atomic Cartesian coordinates (length: N times the number of Cartesian
components requested, X, Y or Z);

• distancePairs: vector of mutual distances (length: N1×N2);

• orientation: best-fit rotation, expressed as a unit quaternion (length: 4).

The types of components used in a colvar (scalar or not) determine the properties of that
colvar, and particularly which biasing or analysis methods can be applied.

What if “X” is not listed? If a function type is not available on this list, it may be possible to
define it as a polynomial superposition of existing ones (see 5.18), a custom function (see 5.19),
or a scripted function (see 5.20).

In the rest of this section, all available component types are listed, along with their physical units
and their ranges of values, if limited. Such ranges are often used to define automatically default
sampling intervals, for example by setting the parameters lowerBoundary and upperBoundary in
the parent colvar.

For each type of component, the available configurations keywords are listed: when two com-
ponents share certain keywords, the second component references to the documentation of the
first one that uses that keyword. The very few keywords that are available for all types of compo-
nents are listed in a separate section 5.15.

5.2 Treatment of periodic boundary conditions

In all colvar components described below, the following rules apply concerning periodic bound-
ary conditions (PBCs):

1. Distance vectors between two coordinates di, j =(x1−x2), are calculated following the minimum-
image convention by default, unless forceNoPBC is enabled. (x1 and x2 may be either indi-
vidual atomic coordinates, or centers of mass of two groups.)

2. For all other functions of individual atomic coordinates, f (x1,x2, . . .), it is assumed that all
atoms that are part of the same group are in the same periodic unit cell (see 6.3).

• forceNoPBC — Use absolute rather than minimum-image distances?

Default: no [ boolean, context: any component ]
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If this keyword is set to yes, PBCs will be ignored when calculating this component. This is
only useful in a limited number of special cases, e.g. to describe the distance between remote
points of a single macromolecule, which cannot be split across periodic cell boundaries, and
for which the minimum-image distance might give the wrong result because of a relatively
small periodic cell.

Example: ignoring PBCs in a distance between two groups. Using forceNoPBC yes when
defining a distance { ... } function lets Colvars ignore the minimum-image convention when
computing the distance between the centers of mass of group1 and group2. (Note that the centers
of mass themselves are always calculated as weighted averages anyway).

colvar {
name d
distance {

forceNoPBC yes
group1 { ... }
group2 { ... }

}
}

5.3 Distances

5.3.1 distance: center-of-mass distance between two groups.

The distance {...} block defines a distance component between the two atom groups, group1
and group2.
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):

• group1 — First group of atoms

[ Atom group, context: distance ]

First group of atoms.

• group2 — analogous to group1

• oneSiteTotalForce — Measure total force on group 1 only?

Default: no [ boolean, context: angle, dipoleAngle, dihedral ]

If this is set to yes, the total force is measured along a vector field (see equation (28) in
section 7.3) that only involves atoms of group1. This option is only useful for ABF, or custom
biases that compute total forces. See section 7.3 for details.
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• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

The value returned is a positive number (in length unit), ranging from 0 to the largest possi-
ble interatomic distance within the chosen boundary conditions (with PBCs, the minimum image
convention is used unless the forceNoPBC option is set).

5.3.2 distanceZ: projection of a distance vector on an axis.

The distanceZ {...} block defines a distance projection component, which can be seen as
measuring the distance between two groups projected onto an axis, or the position of a group
along such an axis. The axis can be defined using either one reference group and a constant
vector, or dynamically based on two reference groups. One of the groups can be set to a dummy
atom to allow the use of an absolute Cartesian coordinate.
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):

• main — Main group of atoms

[ Atom group, context: distanceZ ]

Group of atoms whose position r is measured.

• ref — Reference group of atoms

[ Atom group, context: distanceZ ]

Reference group of atoms. The position of its center of mass is noted r1 below.

• ref2 — Secondary reference group

Default: none [ Atom group, context: distanceZ ]

Optional group of reference atoms, whose position r2 can be used to define a dynamic
projection axis: e = (‖r2− r1‖)−1× (r2− r1). In this case, the origin is rm = 1/2(r1 + r2), and
the value of the component is e · (r− rm).

• axis — Projection axis

Default: (0.0, 0.0, 1.0) [ (x, y, z) triplet, context: distanceZ ]

This vector will be normalized to define a projection axis e for the distance vector r−r1 joining
the centers of groups ref and main. The value of the component is then e ·(r−r1). The vector
should be written as three components separated by commas and enclosed in parentheses.

• oneSiteTotalForce — same definition as oneSiteTotalForce (distance component)

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

This component returns a number (in length unit) whose range is determined by the chosen
boundary conditions. For instance, if the z axis is used in a simulation with periodic boundaries, the
returned value ranges between −bz/2 and bz/2, where bz is the box length along z (this behavior
is disabled if forceNoPBC is set).
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5.3.3 distanceXY: modulus of the projection of a distance vector on a plane.

The distanceXY {...} block defines a distance projected on a plane, and accepts the same
keywords as the component distanceZ, i.e. main, ref, either ref2 or axis, and oneSiteTotalForce.
It returns the norm of the projection of the distance vector between main and ref onto the plane
orthogonal to the axis. The axis is defined using the axis parameter or as the vector joining ref
and ref2 (see distanceZ above).
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):

• main — same definition as main (distanceZ component)

• ref — same definition as ref (distanceZ component)

• ref2 — same definition as ref2 (distanceZ component)

• axis — same definition as axis (distanceZ component)

• oneSiteTotalForce — same definition as oneSiteTotalForce (distance component)

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

5.3.4 distanceVec: distance vector between two groups.

The distanceVec component computes the 3-dimensional vector joining the centers of mass
of group1 and group2. Its values are therefore multi-dimensional and are subject to the restric-
tions listed in 5.17. Moreover, when computing differences between two different values of a
distanceVec variable the minimum-image convention is assumed (unless forceNoPBC is enabled).
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):

• group1 — same definition as group1 (distance component)

• group2 — analogous to group1

• oneSiteTotalForce — same definition as oneSiteTotalForce (distance component)

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

5.3.5 distanceDir: distance unit vector between two groups.
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The distanceDir {...} block defines a distance unit vector component, which accepts the
same keywords as the component distance: group1, group2, and forceNoPBC. It returns a 3-
dimensional unit vector d = (dx,dy,dz), with |d|= 1.

This multi-dimensional variable has two intrinsic degrees of freedom: however, these cannot
be sampled independently as one-dimensional variables. A decomposition in two dimensions can
be done using polarTheta and polarPhi angles, with the caveat that the latter is ill-defined when
the former approaches 0◦ or 180◦.

The distance between two values of distanceDir is calculated internally as the angle (in ra-
dians) between the two unit vectors: this definition adapts the standard Euclidean distance to the
unit sphere, to ensure that restraint forces comply with the mathematical constraint.
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):

• group1 — same definition as group1 (distance component)

• group2 — analogous to group1

• oneSiteTotalForce — same definition as oneSiteTotalForce (distance component)

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

5.3.6 distanceInv: mean distance between two groups of atoms.

The distanceInv {...} block defines a generalized mean distance between two groups of
atoms 1 and 2, where each distance is taken to the power −n:

d[n]
1,2 =

(
1

N1N2
∑
i, j

d−n
i j

)−1/n

(2)

where di j is the distance between atoms i and j in groups 1 and 2 respectively, and n is an even
integer.
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):

• group1 — same definition as group1 (distance component)

• group2 — analogous to group1

• oneSiteTotalForce — same definition as oneSiteTotalForce (distance component)

• exponent — Exponent n in equation 2

Default: 6 [ positive even integer, context: distanceInv ]

Defines the exponent to which the individual distances are elevated before averaging. The
default value of 6 is useful for example to applying restraints based on NOE-measured dis-
tances.

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

This component returns a number ranging from 0 to the largest possible distance within the chosen
boundary conditions.
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5.4 Angles

5.4.1 angle: angle between three groups.

The angle {...} block defines an angle, and contains the three blocks group1, group2 and
group3, defining the three groups. It returns an angle (in degrees) within the interval [0 : 180].
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):

• group1 — same definition as group1 (distance component)

• group2 — analogous to group1

• group3 — analogous to group1

• oneSiteTotalForce — same definition as oneSiteTotalForce (distance component)

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

5.4.2 dipoleAngle: angle between two groups and dipole of a third group.

The dipoleAngle {...} block defines an angle, and contains the three blocks group1, group2
and group3, defining the three groups, being group1 the group where dipole is calculated. It
returns an angle (in degrees) within the interval [0 : 180].
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):

• group1 — same definition as group1 (distance component)

• group2 — analogous to group1

• group3 — analogous to group1

• oneSiteTotalForce — same definition as oneSiteTotalForce (distance component)

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

5.4.3 dihedral: torsional angle between four groups.
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The dihedral {...} block defines a torsional angle, and contains the blocks group1, group2,
group3 and group4, defining the four groups. It returns an angle (in degrees) within the interval
[−180 : 180]. The Colvars module calculates all the distances between two angles taking into ac-
count periodicity. For instance, reference values for restraints or range boundaries can be defined
by using any real number of choice.
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):

• group1 — same definition as group1 (distance component)

• group2 — analogous to group1

• group3 — analogous to group1

• group4 — analogous to group1

• oneSiteTotalForce — same definition as oneSiteTotalForce (distance component)

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

5.4.4 polarTheta: polar angle in spherical coordinates.

The polarTheta {...} block defines the polar angle in spherical coordinates, for the center of
mass of a group of atoms described by the block atoms. It returns an angle (in degrees) within the
interval [0 : 180]. To obtain spherical coordinates in a frame of reference tied to another group of
atoms, use the fittingGroup (6.2) option within the atoms block. An example is provided in file
examples/11_polar_angles.in of the Colvars public repository.
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):

• atoms — Group of atoms defining this function

[ Atom group, context: polarPhi ]

Defines the group of atoms for the COM of which the angle should be calculated.

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

5.4.5 polarPhi: azimuthal angle in spherical coordinates.

The polarPhi {...} block defines the azimuthal angle in spherical coordinates, for the center
of mass of a group of atoms described by the block atoms. It returns an angle (in degrees) within
the interval [−180 : 180]. The Colvars module calculates all the distances between two angles
taking into account periodicity. For instance, reference values for restraints or range boundaries
can be defined by using any real number of choice. To obtain spherical coordinates in a frame of
reference tied to another group of atoms, use the fittingGroup (6.2) option within the atoms block.
An example is provided in file examples/11_polar_angles.in of the Colvars public repository.
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):
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• atoms — Group of atoms defining this function

[ Atom group, context: polarPhi ]

Defines the group of atoms for the COM of which the angle should be calculated.

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

Note: polarPhi is ill-defined when the corresponding polarTheta component is close to 0◦ or
180◦; please take measures to avoid sampling these configurations in your simulations.

5.5 Contacts

5.5.1 coordNum: coordination number between two groups.

The coordNum {...} block defines a coordination number (or number of contacts), which cal-
culates the function (1− (d/d0)

n)/(1− (d/d0)
m), where d0 is the “cutoff” distance, and n and m are

exponents that can control its long range behavior and stiffness [3]. This function is summed over
all pairs of atoms in group1 and group2:

C(group1,group2) = ∑
i∈group1

∑
j∈group2

1− (|xi−x j|/d0)
n

1− (|xi−x j|/d0)m (3)

List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):

• group1 — same definition as group1 (distance component)

• group2 — analogous to group1

• cutoff — “Interaction” distance (length unit)

Default: 4.0 Å [ positive decimal, context: coordNum ]

This number defines the switching distance to define an interatomic contact: for d� d0, the
switching function (1−(d/d0)

n)/(1−(d/d0)
m) is close to 1, at d = d0 it has a value of n/m (1/2

with the default n and m), and at d� d0 it goes to zero approximately like dm−n. Hence, for a
proper behavior, m must be larger than n.

• cutoff3 — Reference distance vector (length unit)

Default: (4.0, 4.0, 4.0) Å [ “(x, y, z)” triplet of positive decimals, context: coordNum ]

The three components of this vector define three different cutoffs d0 for each direction. This
option is mutually exclusive with cutoff.

• expNumer — Numerator exponent

Default: 6 [ positive even integer, context: coordNum ]

This number defines the n exponent for the switching function.
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• expDenom — Denominator exponent

Default: 12 [ positive even integer, context: coordNum ]

This number defines the m exponent for the switching function.

• group2CenterOnly — Use only group2’s center of mass

Default: off [ boolean, context: coordNum ]

If this option is on, only contacts between each atoms in group1 and the center of mass of
group2 are calculated (by default, the sum extends over all pairs of atoms in group1 and
group2). If group2 is a dummyAtom, this option is set to yes by default.

• tolerance — Pairlist control

Default: 0.0 [ decimal, context: coordNum ]

This controls the pair list feature, dictating the minimum value for each summation element
in Eq. 3 such that the pair that contributed the summation element is included in subsequent
simulation timesteps until the next pai r list recalculation. For most applications, this value
should be small (eg. 0.001) to avoid missing important contributions to the overall sum.
Higher values will improve performance by reducing the number of pairs that contribute to
the sum. Values above 1 will exclude all possible pair interactions. Similarly, values below
0 will never exclude a pair from consideration. To ensure continuous forces, Eq. 3 is further
modified by subtracting the tolerance and then rescaling so that each pair covers the range
[0,1].

• pairListFrequency — Pairlist regeneration frequency

Default: 100 [ positive integer, context: coordNum ]

This controls the pairlist feature, dictating how many steps are taken between regenerating
pair lists if the tolerance is greater than 0.

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

This component returns a dimensionless number, which ranges from approximately 0 (all in-
teratomic distances are much larger than the cutoff) to Ngroup1×Ngroup2 (all distances are less
than the cutoff), or Ngroup1 if group2CenterOnly is used. For performance reasons, at least one
of group1 and group2 should be of limited size or group2CenterOnly should be used: the cost of
the loop over all pairs grows as Ngroup1×Ngroup2. Setting tolerance> 0 ameliorates this to some
degree, although every pair is still checked to regenerate the pair list.

5.5.2 selfCoordNum: coordination number between atoms within a group.

The selfCoordNum {...} block defines a coordination number similarly to the component
coordNum, but the function is summed over atom pairs within group1:

C(group1) = ∑
i∈group1

∑
j>i

1− (|xi−x j|/d0)
n

1− (|xi−x j|/d0)m (4)
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The keywords accepted by selfCoordNum are a subset of those accepted by coordNum, namely
group1 (here defining all of the atoms to be considered), cutoff, expNumer, and expDenom.
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):

• group1 — same definition as group1 (coordNum component)

• cutoff — same definition as cutoff (coordNum component)

• cutoff3 — same definition as cutoff3 (coordNum component)

• expNumer — same definition as expNumer (coordNum component)

• expDenom — same definition as expDenom (coordNum component)

• tolerance — same definition as tolerance (coordNum component)

• pairListFrequency — same definition as pairListFrequency (coordNum component)

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

This component returns a dimensionless number, which ranges from approximately 0 (all inter-
atomic distances much larger than the cutoff) to Ngroup1× (Ngroup1− 1)/2 (all distances within the
cutoff). For performance reasons, group1 should be of limited size, because the cost of the loop
over all pairs grows as N2

group1.

5.5.3 hBond: hydrogen bond between two atoms.

The hBond {...} block defines a hydrogen bond, implemented as a coordination number
(eq. 3) between the donor and the acceptor atoms. Therefore, it accepts the same options cutoff
(with a different default value of 3.3 Å), expNumer (with a default value of 6) and expDenom (with
a default value of 8). Unlike coordNum, it requires two atom numbers, acceptor and donor, to be
defined. It returns a dimensionless number, with values between 0 (acceptor and donor far outside
the cutoff distance) and 1 (acceptor and donor much closer than the cutoff).
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):

• acceptor — Number of the acceptor atom

[ positive integer, context: hBond ]

Number that uses the same convention as atomNumbers.

• donor — analogous to acceptor

• cutoff — same definition as cutoff (coordNum component)
Note: default value is 3.3 Å.

• expNumer — same definition as expNumer (coordNum component)
Note: default value is 6.

• expDenom — same definition as expDenom (coordNum component)
Note: default value is 8.
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• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

5.6 Collective metrics

5.6.1 rmsd: root mean square displacement (RMSD) from reference positions.

The block rmsd {...} defines the root mean square replacement (RMSD) of a group of atoms
with respect to a reference structure. For each set of coordinates {x1(t),x2(t), . . .xN(t)}, the colvar
component rmsd calculates the optimal rotation U{xi(t)}→{x(ref)

i } that best superimposes the coor-
dinates {xi(t)} onto a set of reference coordinates {x(ref)

i }. Both the current and the reference
coordinates are centered on their centers of geometry, xcog(t) and x(ref)

cog . The root mean square
displacement is then defined as:

RMSD
(
{xi (t)} ,

{
x(ref)

i

})
=

√
1
N

N

∑
i=1

∣∣∣U (xi(t)−xcog(t)
)
−
(

x(ref)
i −x(ref)

cog

)∣∣∣2 (5)

The optimal rotation U{xi(t)}→{x(ref)
i } is calculated within the formalism developed in reference [4],

which guarantees a continuous dependence of U{xi(t)}→{x(ref)
i } with respect to {xi(t)}.

List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):

• atoms — Group of atoms defining this function

[ Atom group, context: rmsd ]

Defines the group of atoms of which the RMSD should be calculated. Optimal fit options
(such as refPositions and rotateToReference) should typically NOT be set within this
block. Exceptions to this rule are the special cases discussed in the Advanced usage para-
graph below.

• refPositions — Reference coordinates

[ space-separated list of (x, y, z) triplets, context: rmsd ]

This option (mutually exclusive with refPositionsFile) sets the reference coordinates for
RMSD calculation, and uses these to compute the roto-translational fit. See the equivalent
option refPositions within the atom group definition for details on acceptable formats and
other features.

• refPositionsFile — Reference coordinates file

[ UNIX filename, context: rmsd ]

This option (mutually exclusive with refPositions) sets the reference coordinates for RMSD
calculation, and uses these to compute the roto-translational fit. See the equivalent option
refPositionsFile within the atom group definition for details on acceptable file formats and
other features.
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• refPositionsCol — PDB column containing atom flags

[ O, B, X, Y, or Z, context: rmsd ]

If refPositionsFile is a PDB file that contains all the atoms in the topology, this option may
be provided to set which PDB field is used to flag the reference coordinates for atoms.

• refPositionsColValue — Atom selection flag in the PDB column

[ positive decimal, context: rmsd ]

If defined, this value identifies in the PDB column refPositionsCol of the file refPositionsFile
which atom positions are to be read. Otherwise, all positions with a non-zero value are
read.

• atomPermutation — Alternate ordering of atoms for RMSD computation

[ List of atom numbers, context: rmsd ]

If defined, this parameter defines a re-ordering (permutation) of the 1-based atom numbers
that can be used to compute the RMSD, typically due to molecular symmetry. This parameter
can be specified multiple times, each one defining a new permutation: the returned RMSD
value is the minimum over the set of permutations. For example, if the atoms making up
the group are 6, 7, 8, 9, and atoms 7, 8, and 9 are invariant by circular permutation (as the
hydrogens in a CH3 group), a symmetry-adapted RMSD would be obtained by adding:
atomPermutation 6 8 9 7
atomPermutation 6 9 7 8
This will result in these 2 atom orders being considered in addition to the order used when
defining the atom group. Note that this does not affect the least-squares roto-translational
fit. Therefore, this feature is mostly useful when using custom fitting parameters within the
atom group, such as fittingGroup, or when fitting is disabled altogether. For details, see
reference [5].

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

This component returns a positive real number (in length unit).

5.6.2 Advanced usage of the rmsd component.

In the standard usage as described above, the rmsd component calculates a minimum RMSD, that
is, current coordinates are optimally fitted onto the same reference coordinates that are used to
compute the RMSD value. The fit itself is handled by the atom group object, whose parameters are
automatically set by the rmsd component. For very specific applications, however, it may be useful
to control the fitting process separately from the definition of the reference coordinates, to evaluate
various types of non-minimal RMSD values. This can be achieved by setting the related options
(refPositions, etc.) explicitly in the atom group block. This allows for the following non-standard
cases:

1. applying the optimal translation, but no rotation (rotateToReference off), to bias or restrain
the shape and orientation, but not the position of the atom group;
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2. applying the optimal rotation, but no translation (centerToReference off), to bias or restrain
the shape and position, but not the orientation of the atom group;

3. disabling the application of optimal roto-translations, which lets the RMSD component de-
scribe the deviation of atoms from fixed positions in the laboratory frame: this allows for
custom positional restraints within the Colvars module;

4. fitting the atomic positions to different reference coordinates than those used in the RMSD
calculation itself (by specifying refPositions or refPositionsFile within the atom group as
well as within the rmsd block);

5. applying the optimal rotation and/or translation from a separate atom group, defined through
fittingGroup: the RMSD then reflects the deviation from reference coordinates in a sepa-
rate, moving reference frame (see example in the section on fittingGroup).

5.6.3 eigenvector: projection of the atomic coordinates on a vector.

The block eigenvector {...} defines the projection of the coordinates of a group of atoms (or
more precisely, their deviations from the reference coordinates) onto a vector in R3n, where n is
the number of atoms in the group. The computed quantity is the total projection:

p
(
{xi (t)} ,

{
x(ref)

i

})
=

n

∑
i=1

vi ·
(

U(xi(t)−xcog(t))− (x(ref)
i −x(ref)

cog )
)
, (6)

where, as in the rmsd component, U is the optimal rotation matrix, xcog(t) and x(ref)
cog are the centers

of geometry of the current and reference positions respectively, and vi are the components of
the vector for each atom. Example choices for (vi) are an eigenvector of the covariance matrix
(essential mode), or a normal mode of the system. It is assumed that ∑i vi = 0: otherwise, the
Colvars module centers the vi automatically when reading them from the configuration.
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):

• atoms — same definition as atoms (rmsd component)

• refPositions — same definition as refPositions (rmsd component)

• refPositionsFile — same definition as refPositionsFile (rmsd component)

• refPositionsCol — same definition as refPositionsCol (rmsd component)

• refPositionsColValue — same definition as refPositionsColValue (rmsd component)

• vector — Vector components

[ space-separated list of (x, y, z) triplets, context: eigenvector ]

This option (mutually exclusive with vectorFile) sets the values of the vector components.

• vectorFile — file containing vector components

[ UNIX filename, context: eigenvector ]
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This option (mutually exclusive with vector) sets the name of an XYZ (4.7.3) or PDB co-
ordinate file containing the vector components. For a PDB file specifically, the components
are read from the X, Y and Z fields. Note: The PDB file has limited precision and fixed-point
numbers: in some cases, the vector components may not be accurately represented; a XYZ
file should be used instead, containing floating-point numbers. Note: Reading data from a
coordinate file may entail an automatic unit conversion if the length unit currently used by
the MD engine is not Å. If this is not the desired behavior, this can be remedied using the
normalizeVector option described below.

• vectorCol — PDB column used to flag participating atoms

[ O or B, context: eigenvector ]

Analogous to atomsCol.

• vectorColValue — Value used to flag participating atoms in the PDB file

[ positive decimal, context: eigenvector ]

Analogous to atomsColValue.

• normalizeVector — Normalize the vector components when reading them?

Default: off [ boolean, context: eigenvector ]

If this flag is activated, the norm of the vector |v|=
√

∑i |vi|2 is set equal to 1 by automatically
rescaling all the components vi; alternatively, the value of |v| is printed.

• differenceVector — The 3n-dimensional vector is the difference between vector and
refPositions

Default: off [ boolean, context: eigenvector ]

If this option is on, the numbers provided by vector or vectorFile are interpreted as another
set of positions, x′i: the vector vi is then defined as vi =

(
x′i−x(ref)

i

)
. This allows to conve-

niently define a colvar ξ as a projection on the linear transformation between two sets of
positions, “A” and “B”. If this flag is on, the vector is normalized so that ξ = 0 when the atoms
are at the set of positions “A” and ξ = 1 at the set of positions “B”. Setting normalizeVector
on overrides this behavior.

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

5.6.4 gyration: radius of gyration of a group of atoms.

The block gyration {...} defines the parameters for calculating the radius of gyration of a
group of atomic positions {x1(t),x2(t), . . .xN(t)} with respect to their center of geometry, xcog(t):

Rgyr =

√
1
N

N

∑
i=1

∣∣xi(t)−xcog(t)
∣∣2 (7)
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This component must contain one atoms {...} block to define the atom group, and returns a
positive number, expressed in length unit.
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):

• atoms — same definition as atoms (rmsd component)

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

5.6.5 inertia: total moment of inertia of a group of atoms.

The block inertia {...} defines the parameters for calculating the total moment of inertia of
a group of atomic positions {x1(t),x2(t), . . .xN(t)} with respect to their center of geometry, xcog(t):

I =
N

∑
i=1

∣∣xi(t)−xcog(t)
∣∣2 (8)

Note that all atomic masses are set to 1 for simplicity. This component must contain one atoms {...}
block to define the atom group, and returns a positive number, expressed in length unit2.
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):

• atoms — same definition as atoms (rmsd component)

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

5.6.6 dipoleMagnitude: dipole magnitude of a group of atoms.

The dipoleMagnitude {...} block defines the dipole magnitude of a group of atoms (norm of the
dipole moment’s vector), being atoms the group where dipole magnitude is calculated. It returns
the magnitude in elementary charge e times length unit.
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):

• atoms — same definition as atoms (rmsd component)

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

5.6.7 inertiaZ: total moment of inertia of a group of atoms around a chosen axis.
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The block inertiaZ {...} defines the parameters for calculating the component along the
axis e of the moment of inertia of a group of atomic positions {x1(t),x2(t), . . .xN(t)} with respect to
their center of geometry, xcog(t):

Ie =
N

∑
i=1

((
xi(t)−xcog(t)

)
· e
)2 (9)

Note that all atomic masses are set to 1 for simplicity. This component must contain one atoms {...}
block to define the atom group, and returns a positive number, expressed in length unit2.
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):

• atoms — same definition as atoms (rmsd component)

• axis — Projection axis

Default: (0.0, 0.0, 1.0) [ (x, y, z) triplet, context: inertiaZ ]

The three components of this vector define (when normalized) the projection axis e.

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

5.7 Rotations

The variables discussed in this section quantify the rotations of macromolecules (or other
quasi-rigid objects) from a given set of reference coordinates to the current coordinates. Such rota-
tions are computed following the same method used for best-fit RMSDs (see rmsd and fittingGroup).
The underlying mathematical formalism is described in reference [4], and the implementation in
reference [1].

The first of the functions described is the orientation, which describes the full rotation as
a unit quaternion q = (q0,q1,q2,q3), i.e. 4 numbers with one constraint (3 degrees of freedom).
The quaternion q is one of only two representations that are both complete and accurate, the
other being a 3×3 unit matrix with 3 independent parameters. Although q is used internally in the
Colvars module for features such as the rmsd function and the fittingGroup option, its direct use
as a collective variable is more difficult, and mostly limited to fixed or moving restraints.

The two functions orientationAngle and orientationProj, with the latter being the cosine of
the former, represent the amplitude of the full rotation described by q, regardless of the direction of
its axis. As one-dimensional scalar variables, both orientationAngle and orientationProj are a
much reduced simplification of the full rotation. However, they can be used in a variety of methods
including both restraints and PMF computations.

A slightly more complete parametrization is achieved by decomposing the full rotation into the
two parameters, tilt and spinAngle. These quantify the amplitudes of two independent sub-
rotations away from a certain axis e, and around the same axis e, respectively. The axis e is
chosen by the user, and is by default the Z axis: under that choice, tilt is equivalent to the sine
of the Euler “pitch” angle θ , and spinAngle to the sum of the other two angles, (φ +ψ). This
parameterization is mathematically well defined for almost all full rotations, including small ones
when the current coordinates are almost completely aligned with the reference ones. However,
a mathematical singularity prevents using the spinAngle function near configurations where the
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value of tilt tilt is -1 (i.e. a -180◦ rotation around an axis orthogonal to e). For these reasons, tilt
and spinAngle are useful when the allowed rotations are known to have approximately the same
axis, and differ only in the magnitude of the corresponding angle. In this use case, spinAngle
measures the angle of the sub-rotation around the chosen axis e, whereas tilt measures the dot
product between e and the actual axis of the full rotation.

Lastly, the traditional Euler angles are also available as the functions eulerPhi, eulerTheta
and eulerPsi. Altogether, these are sufficient to represent all three degrees of freedom of a
full rotation. However, they also suffer from the potential “gimbal lock” problem, which emerges
whenever θ ' ±90◦, which includes also the case where the full rotation is small. Under such
conditions, the angles φ and ψ are both ill-defined and cannot be used as collective variables.
For these reasons, it is highly recommended that Euler angles are used only in simulations where
their range of applicability is known ahead of time, and excludes configurations where θ ' ±90◦

altogether.

5.7.1 orientation: orientation from reference coordinates.

The block orientation {...} returns the same optimal rotation used in the rmsd component
to superimpose the coordinates {xi(t)} onto a set of reference coordinates {x(ref)

i }. Such compo-
nent returns a four dimensional vector q= (q0,q1,q2,q3), with ∑i q2

i = 1; this quaternion expresses
the optimal rotation {xi(t)} → {x(ref)

i } according to the formalism in reference [4]. The quaternion
(q0,q1,q2,q3) can also be written as (cos(θ/2), sin(θ/2)u), where θ is the angle and u the normal-
ized axis of rotation; for example, a rotation of 90◦ around the z axis is expressed as “(0.707,
0.0, 0.0, 0.707)”. The script quaternion2rmatrix.tcl provides Tcl functions for converting to
and from a 4×4 rotation matrix in a format suitable for usage in VMD.

As for the component rmsd, the available options are atoms, refPositionsFile, refPositionsCol
and refPositionsColValue, and refPositions.

Note: refPositions and refPositionsFile define the set of positions from which the optimal
rotation is calculated, but this rotation is not applied to the coordinates of the atoms involved: it is
used instead to define the variable itself.
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):

• atoms — same definition as atoms (rmsd component)

• refPositions — same definition as refPositions (rmsd component)

• refPositionsFile — same definition as refPositionsFile (rmsd component)

• refPositionsCol — same definition as refPositionsCol (rmsd component)

• refPositionsColValue — same definition as refPositionsColValue (rmsd component)

• closestToQuaternion — Reference rotation

Default: (1.0, 0.0, 0.0, 0.0) (“null” rotation) [ “(q0, q1, q2, q3)” quadruplet, context:
orientation ]

Between the two equivalent quaternions (q0,q1,q2,q3) and (−q0,−q1,−q2,−q3), the closer to
(1.0, 0.0, 0.0, 0.0) is chosen. This simplifies the visualization of the colvar trajectory
when sampled values are a smaller subset of all possible rotations. Note: this only affects
the output, never the dynamics.

49

https://raw.githubusercontent.com/Colvars/colvars/master/colvartools/quaternion2rmatrix.tcl


• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

Example: stopping the rotation of a protein. To stop the rotation of an elongated macro-
molecule in solution (and use an anisotropic box to save water molecules), it is possible to define
a colvar with an orientation component, and restrain it through the harmonic bias around the
identity rotation, (1.0, 0.0, 0.0, 0.0). Only the overall orientation of the macromolecule is af-
fected, and not its internal degrees of freedom.

colvar {
name Orient
orientation {

atoms { ... }
refPositionsFile reference.pdb

}
}

harmonic { # Define a harmonic restraint
colvars Orient # acting on colvar "Orient"
centers (1.0, 0.0, 0.0, 0.0) # center the unit quaternion (no rotation)
forceConstant 500.0 # unit is energy: quaternions are dimensionless

}

5.7.2 orientationAngle: angle of rotation from reference coordinates.

The block orientationAngle {...} accepts the same base options as the component orientation:
atoms, refPositions, refPositionsFile, refPositionsCol and refPositionsColValue. The re-
turned value is the angle of rotation θ between the current and the reference positions. This angle
is expressed in degrees within the range [0◦:180◦].
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):

• atoms — same definition as atoms (rmsd component)

• refPositions — same definition as refPositions (rmsd component)

• refPositionsFile — same definition as refPositionsFile (rmsd component)

• refPositionsCol — same definition as refPositionsCol (rmsd component)

• refPositionsColValue — same definition as refPositionsColValue (rmsd component)

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no
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5.7.3 orientationProj: cosine of the angle of rotation from reference coordinates.

The block orientationProj {...} accepts the same base options as the component orientation:
atoms, refPositions, refPositionsFile, refPositionsCol and refPositionsColValue. The re-
turned value is the cosine of the angle of rotation θ between the current and the reference posi-
tions. The range of values is [-1:1].
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):

• atoms — same definition as atoms (rmsd component)

• refPositions — same definition as refPositions (rmsd component)

• refPositionsFile — same definition as refPositionsFile (rmsd component)

• refPositionsCol — same definition as refPositionsCol (rmsd component)

• refPositionsColValue — same definition as refPositionsColValue (rmsd component)

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

5.7.4 spinAngle: angle of rotation around a given axis.

The complete rotation described by orientation can optionally be decomposed into two sub-
rotations: one is a “spin” rotation around e, and the other a “tilt” rotation around an axis orthogonal
to e. The component spinAngle measures the angle of the “spin” sub-rotation around e.
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):

• atoms — same definition as atoms (rmsd component)

• refPositions — same definition as refPositions (rmsd component)

• refPositionsFile — same definition as refPositionsFile (rmsd component)

• refPositionsCol — same definition as refPositionsCol (rmsd component)

• refPositionsColValue — same definition as refPositionsColValue (rmsd component)

• axis — Special rotation axis

Default: (0.0, 0.0, 1.0) [ (x, y, z) triplet, context: tilt ]

The three components of this vector define (when normalized) the special rotation axis used
to calculate the tilt and spinAngle components.

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no
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The component spinAngle returns an angle (in degrees) within the periodic interval [−180 : 180].
Note: the value of spinAngle is a continuous function almost everywhere, with the exception of

configurations with the corresponding “tilt” angle equal to 180◦ (i.e. the tilt component is equal
to −1): in those cases, spinAngle is undefined. If such configurations are expected, consider
defining a tilt colvar using the same axis e, and restraining it with a lower wall away from −1.

5.7.5 tilt: cosine of the rotation orthogonal to a given axis.

The component tilt measures the cosine of the angle of the “tilt” sub-rotation, which com-
bined with the “spin” sub-rotation provides the complete rotation of a group of atoms. The cosine
of the tilt angle rather than the tilt angle itself is implemented, because the latter is unevenly
distributed even for an isotropic system: consider as an analogy the angle θ in the spherical co-
ordinate system. The component tilt relies on the same options as spinAngle, including the
definition of the axis e. The values of tilt are real numbers in the interval [−1 : 1]: the value
1 represents an orientation fully parallel to e (tilt angle = 0◦), and the value −1 represents an
anti-parallel orientation.
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):

• atoms — same definition as atoms (rmsd component)

• refPositions — same definition as refPositions (rmsd component)

• refPositionsFile — same definition as refPositionsFile (rmsd component)

• refPositionsCol — same definition as refPositionsCol (rmsd component)

• refPositionsColValue — same definition as refPositionsColValue (rmsd component)

• axis — same definition as axis (spinAngle component)

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

5.7.6 eulerPhi: Roll angle from references coordinates.

Assuming the axes of the original frame are denoted as x, y, z and the axes of the rotated
frame as X, Y, Z, the line of nodes, N, can be defined as the intersection of the plane xy and XY.
The axis perpendicular to N and z is defined as P. In this case, as illustrated in the figure below,
the complete rotation described by orientation can optionally be decomposed into three Euler
angles:

(i) the “roll” angle φ , i.e. the rotation angle from the x axis to the N axis;

(ii) the “pitch” angle θ , i.e. the rotation angle from the P axis to the Z axis, and

(iii) the “yaw” angle ψ, i.e. the rotation angle from the N axis to the X axis.
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Although Euler angles are more straightforward to use than quaternions, they are also poten-
tially subject to the “gimbal lock” problem:
https://en.wikipedia.org/wiki/Gimbal_lock
which arises whenever θ ' ±90◦, including the common case when the simulated coordinates
are near the reference coordinates. Therefore, a safe use of Euler angles as collective variables
requires the use of restraints to avoid such singularities, such as done in reference [6] and in the
protein-ligand binding NAMD tutorial.

The eulerPhi component accepts exactly the same options as orientation, and measures
the rotation angle from the x axis to the N axis. This angle is expressed in degrees within the
periodic range [−180◦ : 180◦].
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):

• atoms — same definition as atoms (rmsd component)

• refPositions — same definition as refPositions (rmsd component)

• refPositionsFile — same definition as refPositionsFile (rmsd component)

• refPositionsCol — same definition as refPositionsCol (rmsd component)

• refPositionsColValue — same definition as refPositionsColValue (rmsd component)

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

5.7.7 eulerTheta: Pitch angle from references coordinates.

This component accepts exactly the same options as orientation, and measures the rotation
angle from the P axis to the Z axis. This angle is expressed in degrees within the range [−90◦ : 90◦].

Warning: When this angle reaches −90◦ or 90◦, the definition of orientation by euler angles
suffers from the gimbal lock issue. You may need to apply a restraint to keep eulerTheta away
from the singularities.
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):
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• atoms — same definition as atoms (rmsd component)

• refPositions — same definition as refPositions (rmsd component)

• refPositionsFile — same definition as refPositionsFile (rmsd component)

• refPositionsCol — same definition as refPositionsCol (rmsd component)

• refPositionsColValue — same definition as refPositionsColValue (rmsd component)

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

5.7.8 eulerPsi: Yaw angle from references coordinates.

This component accepts exactly the same options as orientation, and measures the rotation
angle from the N axis to the X axis. This angle is expressed in degrees within the periodic range
[−180◦ : 180◦].
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):

• atoms — same definition as atoms (rmsd component)

• refPositions — same definition as refPositions (rmsd component)

• refPositionsFile — same definition as refPositionsFile (rmsd component)

• refPositionsCol — same definition as refPositionsCol (rmsd component)

• refPositionsColValue — same definition as refPositionsColValue (rmsd component)

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

5.8 Protein structure descriptors

5.8.1 alpha: α-helix content of a protein segment.

The block alpha {...} defines a measure of the helical content of a segment of protein
residues, as a tunable combination of an angle term between alpha carbon atoms, and a 1-4
hydrogen-bond term. To create a colvar that computes the helical content of a protein with sev-
eral, non-contiguous helical segments, just define several alpha blocks inside a single colvar block,
and give them linear combination coefficients that sum to 1 (see componentCoeff in section 5.18).
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The α-helical content across the N +1 residues N0 to N0 +N is calculated by the formula:

α

(
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α ,O(N0+1), . . .N(N0+5),C(N0+5)
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α

)
= (10)
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where Chb is defined by hBondCoeff, the score function angf for the Cα −Cα −Cα angle is defined
as:
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4
, (12)

and the score function hbf for the O(n)↔ N(n+4) hydrogen bond is defined through a hBond colvar
component on the same atoms.
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):

• prefix — Prefix of atom groups to be used for computing the α-helix content

Default: alpha_ [ string, context: alpha ]

Atoms involved in an alpha-helix component are based on groups defined within a GROMACS-
style index file specified with indexFile in the global Colvars configuration, i.e. outside of a
colvar block. The group names must use a common prefix followed by atom names, e.g.
alpha_N, alpha_CA, and alpha_O when using the default prefix alpha_. The CA group is
only required when the angle term is enabled, that is when hBondCoeff is less than 1. This
option lets users set a different prefix, for example, when several α-helical segments must
be tracked.

• residueRange — Potential α-helical residues

[ “<Initial residue number>-<Final residue number>”, context: alpha ]

In some back-ends like NAMD and VMD, the atoms may be defined using their PSF seg-
ment name (segname) and a range of residue numbers. This option specifies the range
of residues on which this component should be defined. The Colvars module looks for the
atoms within these residues named “CA”, “N” and “O”, and raises an error if any of those atoms
is not found.

• psfSegID — PSF segment identifier

[ string (max 4 characters), context: alpha ]

This option sets the PSF segment identifier for the residues specified in residueRange. This
option is only required when PSF topologies are used.

• hBondCoeff — Coefficient for the hydrogen bond term

Default: 0.5 [ positive between 0 and 1, context: alpha ]

This number specifies the contribution to the total value from the hydrogen bond terms. 0
disables the hydrogen bond terms, 1 disables the angle terms.

55



• angleRef — Reference Cα −Cα −Cα angle

Default: 88◦ [ positive decimal, context: alpha ]

This option sets the reference angle used in the score function (12).

• angleTol — Tolerance in the Cα −Cα −Cα angle

Default: 15◦ [ positive decimal, context: alpha ]

This option sets the angle tolerance used in the score function (12).

• hBondCutoff — Hydrogen bond cutoff

Default: 3.3 Å [ positive decimal, context: alpha ]

Equivalent to the cutoff option in the hBond component.

• hBondExpNumer — Hydrogen bond numerator exponent

Default: 6 [ positive integer, context: alpha ]

Equivalent to the expNumer option in the hBond component.

• hBondExpDenom — Hydrogen bond denominator exponent

Default: 8 [ positive integer, context: alpha ]

Equivalent to the expDenom option in the hBond component.

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

This component returns positive values, always comprised between 0 (lowest α-helical score)
and 1 (highest α-helical score).

5.8.2 dihedralPC: protein dihedral principal component

The block dihedralPC {...} defines the parameters of the projection of backbone dihedral
angles within a protein segment onto a dihedral principal component, following the formalism of
dihedral principal component analysis (dPCA) proposed by Mu et al.[7] and documented in de-
tail by Altis et al.[8]. Given a peptide or protein segment of N residues, each with Ramachan-
dran angles φi and ψi, dPCA rests on a variance/covariance analysis of the 4(N − 1) variables
cos(ψ1),sin(ψ1),cos(φ2),sin(φ2) · · ·cos(φN),sin(φN). Note that angles φ1 and ψN have little impact
on chain conformation, and are therefore discarded, following the implementation of dPCA in the
analysis software Carma.[9]

For a given principal component (eigenvector) of coefficients (ki)1≤i≤4(N−1), the projection of
the current backbone conformation is:

ξ =
N−1

∑
n=1

k4n−3 cos(ψn)+ k4n−2 sin(ψn)+ k4n−1 cos(φn+1)+ k4n sin(φn+1) (13)

The atoms involved in dihedralPC are defined by the same parameters as the alpha compo-
nent.
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):
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• prefix — Prefix of atom groups to be used for computing a dihedralPC projection

Default: dihed_ [ string, context: dihedralPC ]

Backbone atoms involved in a dihedralPC component are based on groups defined within a
GROMACS-style index file specified with indexFile in the global Colvars configuration, i.e.
outside of a colvar block. The group names must use a common prefix followed by atom
names CA, N, and C, e.g. dihed_CA, dihed_N, and dihed_C when using the default prefix
dihed_.

• residueRange — same definition as residueRange (alpha component)

• psfSegID — same definition as psfSegID (alpha component)

• vectorFile — File containing dihedral PCA eigenvector(s)

[ file name, context: dihedralPC ]

A text file containing the coefficients of dihedral PCA eigenvectors on the cosine and sine
coordinates. The vectors should be arranged in columns, as in the files output by Carma.[9]

• vectorNumber — File containing dihedralPCA eigenvector(s)

[ positive integer, context: dihedralPC ]

Number of the eigenvector to be used for this component.

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

5.9 Raw data: building blocks for custom functions

5.9.1 cartesian: vector of atomic Cartesian coordinates.

The cartesian {...} block defines a component returning a flat vector containing the Carte-
sian coordinates of all participating atoms, in the order (x1,y1,z1, · · · ,xn,yn,zn).
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):

• atoms — Group of atoms

[ Atom group, context: cartesian ]

Defines the atoms whose coordinates make up the value of the component. If rotateToReference,
centerToReference, or centerToOrigin are defined, coordinates are evaluated within the
moving frame of reference.

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no
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5.9.2 distancePairs: set of pairwise distances between two groups.

The distancePairs {...} block defines a N1×N2-dimensional variable that includes all mutual
distances between the atoms of two groups. This can be useful, for example, to develop a new
variable defined over two groups, by using the scriptedFunction feature.
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):

• group1 — same definition as group1 (distance component)

• group2 — analogous to group1

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

This component returns a N1 ×N2-dimensional vector of numbers, each ranging from 0 to the
largest possible distance within the chosen boundary conditions.

5.10 Geometric path collective variables

The geometric path collective variables define the progress along a path, s, and the distance
from the path, z. These CVs are proposed by Leines and Ensing[10] , which differ from that[11]
proposed by Branduardi et al., and utilize a set of geometric algorithms. The path is defined as a
series of frames in the atomic Cartesian coordinate space or the CV space. s and z are computed
as

s =
m
M
± 1

2M

(√
(v1 ·v3)2−|v3|2(|v1|2−|v2|2)− (v1 ·v3)

|v3|2
−1

)
(14)

z =

√√√√(v1 +
1
2

(√
(v1 ·v3)2−|v3|2(|v1|2−|v2|2)− (v1 ·v3)

|v3|2
−1

)
v4

)2

(15)

where v1 = sm−z is the vector connecting the current position to the closest frame, v2 = z−sm−1
is the vector connecting the second closest frame to the current position, v3 = sm+1−sm is the vector
connecting the closest frame to the third closest frame, and v4 = sm− sm−1 is the vector connecting
the second closest frame to the closest frame. m and M are the current index of the closest frame
and the total number of frames, respectively. If the current position is on the left of the closest
reference frame, the ± in s turns to the positive sign. Otherwise it turns to the negative sign.

The equations above assume: (i) the frames are equidistant and (ii) the second and the third
closest frames are neighbouring to the closest frame. When these assumptions are not satisfied,
this set of path CV should be used carefully.

5.10.1 gspath: progress along a path defined in atomic Cartesian coordinate space.
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In the gspath {...} and the gzpath {...} block all vectors, namely z and sk are defined in
atomic Cartesian coordinate space. More specifically, z = [r1, · · · ,rn], where ri is the i-th atom
specified in the atoms block. sk = [rk,1, · · · ,rk,n], where rk,i means the i-th atom of the k-th reference
frame.
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):

• atoms — Group of atoms

[ Atom group, context: gspath and gzpath ]

Defines the atoms whose coordinates make up the value of the component.

• refPositionsCol — PDB column containing atom flags

[ O, B, X, Y, or Z, context: gspath and gzpath ]

If refPositionsFileN is a PDB file that contains all the atoms in the topology, this option
may be provided to set which PDB field is used to flag the reference coordinates for atoms.

• refPositionsFileN — File containing the reference positions for fitting

[ UNIX filename, context: gspath and gzpath ]

The path is defined by multiple refPositionsFiles which are similiar to refPositionsFile
in the rmsd CV. If your path consists of 10 nodes, you can list the coordinate file (in PDB or
XYZ format) from refPositionsFile1 to refPositionsFile10.

• useSecondClosestFrame — Define sm−1 as the second closest frame?

Default: on [ boolean, context: gspath and gzpath ]

The definition assumes the second closest frame is neighbouring to the closest frame. This
is not always true especially when the path is crooked. If this option is set to on (default),
sm−1 is defined as the second closest frame. If this option is set to off, sm−1 is defined as the
left or right neighbouring frame of the closest frame.

• useThirdClosestFrame — Define sm+1 as the third closest frame?

Default: off [ boolean, context: gspath and gzpath ]

The definition assumes the third closest frame is neighbouring to the closest frame. This is
not always true especially when the path is crooked. If this option is set to on, sm+1 is defined
as the third closest frame. If this option is set to off (default), sm+1 is defined as the left or
right neighbouring frame of the closest frame.

• fittingAtoms — The atoms that are used for alignment

[ Group of atoms, context: gspath and gzpath ]

Before calculating v1, v2, v3 and v4, the current frame need to be aligned to the corresponding
reference frames. This option specifies which atoms are used to do alignment.

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no
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5.10.2 gzpath: distance from a path defined in atomic Cartesian coordinate space.

List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):

• useZsquare — Compute z2 instead of z

Default: off [ boolean, context: gzpath ]

z is not differentiable when it is zero. This implementation workarounds it by setting the
derivative of z to zero when z = 0. Another workaround is set this option to on, which com-
putes z2 instead of z, and then z2 is differentiable when it is zero.

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

The usage of gzpath and gspath is illustrated below:

colvar {
# Progress along the path
name gs
# The path is defined by 5 reference frames (from string-00.pdb to string-04.pdb)
# Use atomic coordinate from atoms 1, 2 and 3 to compute the path
gspath {

atoms {atomnumbers { 1 2 3 }}
refPositionsFile1 string-00.pdb
refPositionsFile2 string-01.pdb
refPositionsFile3 string-02.pdb
refPositionsFile4 string-03.pdb
refPositionsFile5 string-04.pdb

}
}
colvar {

# Distance from the path
name gz
# The path is defined by 5 reference frames (from string-00.pdb to string-04.pdb)
# Use atomic coordinate from atoms 1, 2 and 3 to compute the path
gzpath {

atoms {atomnumbers { 1 2 3 }}
refPositionsFile1 string-00.pdb
refPositionsFile2 string-01.pdb
refPositionsFile3 string-02.pdb
refPositionsFile4 string-03.pdb
refPositionsFile5 string-04.pdb

}
}
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5.10.3 linearCombination: Helper CV to define a linear combination of other CVs

This is a helper CV which can be defined as a linear combination of other CVs. It maybe useful
when you want to define the gspathCV {...} and the gzpathCV {...} as combinations of other
CVs. Total forces (required by ABF) of this CV are not available.

5.10.4 customColvar: Helper CV to define a mathematical expression as CV from other
CVs

This is a helper CV which can be defined as a mathematical expression (see 5.19) of other
CVs by using customFunction. Currently only the scalar type of customFunction is supported. If
customFunction is not provided, this component falls back to linearCombination. It maybe useful
when you want to define the gspathCV {...}, the gzpathCV {...} and NeuralNetwork {...} as
combinations of other CVs. Total forces (required by ABF) of this CV are not available.

5.10.5 gspathCV: progress along a path defined in CV space.

In the gspathCV {...} and the gzpathCV {...} block all vectors, namely z and sk are de-
fined in CV space. More specifically, z = [ξ1, · · · ,ξn], where ξi is the i-th CV. sk = [ξk,1, · · · ,ξk,n],
where ξk,i means the i-th CV of the k-th reference frame. It should be note that these two CVs
requires the pathFile option, which specifies a path file. Each line in the path file contains a set
of space-seperated CV value of the reference frame. The sequence of reference frames matches
the sequence of the lines.
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):

• useSecondClosestFrame — Define sm−1 as the second closest frame?

Default: on [ boolean, context: gspathCV and gzpathCV ]

The definition assumes the second closest frame is neighbouring to the closest frame. This
is not always true especially when the path is crooked. If this option is set to on (default),
sm−1 is defined as the second closest frame. If this option is set to off, sm−1 is defined as the
left or right neighbouring frame of the closest frame.

• useThirdClosestFrame — Define sm+1 as the third closest frame?

Default: off [ boolean, context: gspathCV and gzpathCV ]

The definition assumes the third closest frame is neighbouring to the closest frame. This is
not always true especially when the path is crooked. If this option is set to on, sm+1 is defined
as the third closest frame. If this option is set to off (default), sm+1 is defined as the left or
right neighbouring frame of the closest frame.

• pathFile — The file name of the path file.

[ UNIX filename, context: gspathCV and gzpathCV ]
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Defines the nodes or images that constitutes the path in CV space. The CVs of an image
are listed in a line of pathFile using space-seperated format. Lines from top to button in
pathFile corresponds images from initial to last.

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

5.10.6 gzpathCV: distance from a path defined in CV space.

List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):

• useZsquare — Compute z2 instead of z

Default: off [ boolean, context: gzpathCV ]

z is not differentiable when it is zero. This implementation workarounds it by setting the
derivative of z to zero when z = 0. Another workaround is set this option to on, which com-
putes z2 instead of z, and then z2 is differentiable when it is zero.

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

The usage of gzpathCV and gspathCV is illustrated below:

colvar {
# Progress along the path
name gs
# Path defined by the CV space of two dihedral angles
gspathCV {

pathFile ./path.txt
dihedral {

name 001
group1 {atomNumbers {5}}
group2 {atomNumbers {7}}
group3 {atomNumbers {9}}
group4 {atomNumbers {15}}

}
dihedral {

name 002
group1 {atomNumbers {7}}
group2 {atomNumbers {9}}
group3 {atomNumbers {15}}
group4 {atomNumbers {17}}

}
}

}

colvar {
# Distance from the path
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name gz
gzpathCV {

pathFile ./path.txt
dihedral {

name 001
group1 {atomNumbers {5}}
group2 {atomNumbers {7}}
group3 {atomNumbers {9}}
group4 {atomNumbers {15}}

}
dihedral {

name 002
group1 {atomNumbers {7}}
group2 {atomNumbers {9}}
group3 {atomNumbers {15}}
group4 {atomNumbers {17}}

}
}

}

5.11 Arithmetic path collective variables

The arithmetic path collective variable in CV space uses a similar formula as the one proposed
by Branduardi[11] et al., except that it computes s and z in CV space instead of RMSDs in Cartesian
space. Moreover, this implementation allows different coefficients for each CV components as
described in [12]. Assuming a path is composed of N reference frames and defined in an M-
dimensional CV space, then the equations of s and z of the path are

s =
1

N−1

∑
N−1
i=0 iexp

(
−λ ∑

M
j=1 c2

j (x j− xi, j)
2
)
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) (16)

z =− 1
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(
−λ

M

∑
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c2
j (x j− xi, j)

2

))
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where c j is the coefficient(weight) of the j-th CV, xi, j is the value of j-th CV of i-th reference frame
and x j is the value of j-th CV of current frame. λ is a parameter to smooth the variation of s and z.
It should be noted that the index i ranges from 0 to N−1, and the definition of s is normalized by
1/(N−1). Consequently, the scope of s is [0 : 1].

5.11.1 aspathCV: progress along a path defined in CV space.

This colvar component computes the s variable.
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):
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• weights — Coefficients of the collective variables

Default: {1.0 ...} [ space-separated numbers in a {...} block, context: aspathCV and
azpathCV ]

Define the coefficients. The j-th value in the {...} block corresponds the c j in the equations.

• lambda — Smoothness of the variation of s and z

Default: inverse of the mean square displacements of successive reference frames [ decimal,
context: aspathCV and azpathCV ]

The value of λ in the equations.

• pathFile — The file name of the path file.

[ UNIX filename, context: aspathCV and azpathCV ]

Defines the nodes or images that constitutes the path in CV space. The CVs of an image
are listed in a line of pathFile using space-separated format. Lines from top to button in
pathFile corresponds images from initial to last.

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

5.11.2 azpathCV: distance from a path defined in CV space.

This colvar component computes the z variable. Options are the same as in 5.11.1.
The usage of azpathCV and aspathCV is illustrated below:

colvar {
# Progress along the path
name as
# Path defined by the CV space of two dihedral angles
aspathCV {

pathFile ./path.txt
weights {1.0 1.0}
lambda 0.005
dihedral {

name 001
group1 {atomNumbers {5}}
group2 {atomNumbers {7}}
group3 {atomNumbers {9}}
group4 {atomNumbers {15}}

}
dihedral {

name 002
group1 {atomNumbers {7}}
group2 {atomNumbers {9}}
group3 {atomNumbers {15}}
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group4 {atomNumbers {17}}
}

}
}

colvar {
# Distance from the path
name az
azpathCV {

pathFile ./path.txt
weights {1.0 1.0}
lambda 0.005
dihedral {

name 001
group1 {atomNumbers {5}}
group2 {atomNumbers {7}}
group3 {atomNumbers {9}}
group4 {atomNumbers {15}}

}
dihedral {

name 002
group1 {atomNumbers {7}}
group2 {atomNumbers {9}}
group3 {atomNumbers {15}}
group4 {atomNumbers {17}}

}
}

}

5.11.3 Path collective variables in Cartesian coordinates

The path collective variables defined by Branduardi et al. [11] are based on RMSDs in Carte-
sian coordinates. Noting di the RMSD between the current set of Cartesian coordinates and those
of image number i of the path:

s =
1

N−1
∑

N
i=1(i−1)exp

(
−λd2

i
)

∑
N
i=1 exp

(
−λd2

i

) (18)

z =− 1
λ

ln

(
N

∑
i=1

exp(−λd2
i )

)
(19)

where λ is the smoothing parameter.
These coordinates are implemented as Tcl-scripted combinations of rmsd components. The

implementation is available as file colvartools/pathCV.tcl, and an example is provided in file
examples/10_pathCV.namd of the Colvars public repository. It implements an optimization proce-
dure, whereby the distance to a given image is only calculated if its contribution to the sum is larger
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than a user-defined tolerance parameter. All distances are calculated every freq timesteps to
update the list of nearby images.

5.11.4 aspath: progress along a path defined in atomic Cartesian coordinate space.

This CV computes a special case of Eq. 16, where x j is the j-th atomic position, xi, j is the
j-th atomic position of the i-th reference frame. The subtraction x j− xi, j is actually calculated as
x j−Rixi, j, where Ri is a 3x3 rotation matrix that minimizes the RMSD between the current atomic
positions of simulation and the i-th reference frame. Bold x j is used since an atomic position is a
vector.

For NAMD and VMD users, this component can be regarded as an improved C++ implemen-
tation of the PCV progress component of the Tcl-scripted version (see 5.11.3).
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):

• atoms — Group of atoms

[ Atom group, context: aspath and azpath ]

Defines the atoms whose coordinates make up the value of the component.

• refPositionsCol — PDB column containing atom flags

[ O, B, X, Y, or Z, context: aspath and azpath ]

If refPositionsFileN is a PDB file that contains all the atoms in the topology, this option
may be provided to set which PDB field is used to flag the reference coordinates for atoms.

• refPositionsFileN — File containing the reference positions for fitting

[ UNIX filename, context: aspath and azpath ]

The path is defined by multiple refPositionsFiles which are similiar to refPositionsFile
in the rmsd CV. If your path consists of 10 nodes, you can list the coordinate file (in PDB or
XYZ format) from refPositionsFile1 to refPositionsFile10.

• fittingAtoms — The atoms that are used for alignment

[ Group of atoms, context: aspath and azpath ]

Before calculating v1, v2, v3 and v4, the current frame need to be aligned to the corresponding
reference frames. This option specifies which atoms are used to do alignment.

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

5.11.5 azpath: distance from a path defined in atomic Cartesian coordinate space.

Similar to aspath, this CV computes a special case of Eq. 17, and shares the same options as
aspath.

The usage of azpath and aspath is illustrated below:

66



colvar {
# Progress along the path
name as
# The path is defined by 5 reference frames (from string-00.pdb to string-04.pdb)
# Use atomic coordinate from atoms 1, 2 and 3 to compute the path
aspath {

atoms {atomnumbers { 1 2 3 }}
refPositionsFile1 string-00.pdb
refPositionsFile2 string-01.pdb
refPositionsFile3 string-02.pdb
refPositionsFile4 string-03.pdb
refPositionsFile5 string-04.pdb

}
}

colvar {
# Distance from the path
name az
# The path is defined by 5 reference frames (from string-00.pdb to string-04.pdb)
# Use atomic coordinate from atoms 1, 2 and 3 to compute the path
azpath {

atoms {atomnumbers { 1 2 3 }}
refPositionsFile1 string-00.pdb
refPositionsFile2 string-01.pdb
refPositionsFile3 string-02.pdb
refPositionsFile4 string-03.pdb
refPositionsFile5 string-04.pdb

}
}

5.12 Dense neural network in CV space (MLCV)

This colvar component computes a non-linear combination of other scalar colvar components,
where the transformation is defined by a dense neural network.[13] The network can be optimized
using any framework, and its parameters are provided to Colvars in plain text files, as detailed
below. An example Python script to export the parameters of a TensorFlow model is provided in
colvartools/extract_weights_biases.py in the Colvars source tree.

The output of the j-th node of a k-th layer that has Nk nodes is computed by

yk, j = fk

(
Nk−1

∑
i=1

w(k, j),(k−1,i)yk−1,i +bk, j

)
, (20)

where fk is the activation function of the k-th layer, w(k, j),(k−1,i) is the weight of j-th node with
respect to the i-th output of previous layer, and bk, j is the bias of j-th node of k-th layer.
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):
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Figure 1: Graphical representation of an example dense neural network with two hidden layers y1
and y2. Both the input layer x and the output layer z have two nodes. The input nodes can be any
existing scalar CVs.

• output_component — The j-th node of the output or the last layer

[ integer starting from 0, context: NeuralNetwork ]

The value of this option specifies the output node to be used as the value of this CV.

• layeri_WeightsFile — The weights from layer i−1 to layer i

[ UNIX filename, context: NeuralNetwork ]

The letter i in this option needs to be replaced with the indexing number starting from 1, for
example, layer1_WeightsFile and layer2_WeightsFile. The value of this option specifies
a plain text file containing the weights from layer i−1 to layer i. In the file, the number at k-th
column and l-th row represents the weight from node k at layer i−1 to node l at layer i.

• layeri_BiasesFile — The biases from layer i−1 to layer i

[ UNIX filename, context: NeuralNetwork ]

The letter i in this option needs to be replaced with the indexing number starting from 1, for
example, layer1_BiasesFile and layer2_BiasesFile. The value of this option specifies a
plain text file containing the weights of layer i. The file should have only one column, where
the number at l-th row represents the bias of node l from layer i−1 to layer i.

• layeri_activation — The activation function from layer i−1 to layer i

[ tanh, sigmoid, linear, relu, lrelu100, elu , context: NeuralNetwork ]

The letter i in this option needs to be replaced with the indexing number starting from 1, for
example, layer1_activation and layer2_activation. The activation function from layer
i− 1 to layer i. Available choices are tanh, sigmoid, linear (identity), relu, lrelu100 (a
leaky rely with coefficients 10−2 and 1), and elu (with coefficient 1).

• layeri_custom_activation — An alternative custom expression as the activation function
from layer i−1 to layer i

[ string, context: NeuralNetwork ]

Mathematical expression to define the activation function from layer i−1 to layer i. The input
value must be written as x. For example, the ELU activation function can be expressed
as select(step(x), alpha*(exp(x)-1), x). For details of the expression syntax, see
customFunction. This option is mutually exclusive with colvar|NeuralNetwork|layeri_activation
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• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

An example of configuration using NeuralNetwork is shown below:

colvar {
# Define a neural network with 2 layers
# The inputs are two torsion angles
# and the first node at the output layer is used as the final CV
name nn_output_1
NeuralNetwork {

output_component 0
layer1_WeightsFile dense_1_weights.txt
layer1_BiasesFile dense_1_biases.txt
layer1_activation tanh
layer2_WeightsFile dense_2_weights.txt
layer2_BiasesFile dense_2_biases.txt
layer2_activation tanh
# The component coefficient is used for normalization
componentCoeff 180.0
dihedral {

name 001
# normalization factor 1.0/180.0
componentCoeff 0.00555555555555555556
group1 {atomNumbers {5}}
group2 {atomNumbers {7}}
group3 {atomNumbers {9}}
group4 {atomNumbers {15}}

}
dihedral {

name 002
# normalization factor 1.0/180.0
componentCoeff 0.00555555555555555556
group1 {atomNumbers {7}}
group2 {atomNumbers {9}}
group3 {atomNumbers {15}}
group4 {atomNumbers {17}}

}
}

}

5.13 Torch-based collective variables

The torchANN keyword defines a component based on an artificial neural network (ANN) model
previously trained using PyTorch. Similarly to the linearCombination and neuralNetwork compo-
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nents, the ANN model is expressed as a function of collective variable components. The model is
loaded from a PyTorch-formatted file, defined by the keyword modelFile.

This component requires that VMD is linked against the libTorch library; see 10 for more details.
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):

• modelFile — Name of the file containing the model (PyTorch format)

[ filename, context: torchANN ]

This file contains the PyTorch model, as saved for example by the torch.jit.save() func-
tion.

• output_component — Index of the output node to use

Default: 0 [ 0-based integer, context: torchANN ]

This option specifies the index of the output node to be used as the value collective variable
(see also the equivalent keyword output_component in the built-in neural network implemen-
tation).

• doubleInputTensor — Specify that the input model is in double precision

Default: off [ boolean, context: torchANN ]

This flags controls the precision of the PyTorch model contained in modelFile.

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

5.14 Volumetric map-based variables

Volumetric maps of the Cartesian coordinates, typically defined as mesh grid along the three
Cartesian axes, may be used to define collective variables. Please cite [14] when using this
implementation of collective variables based on volumetric maps.

5.14.1 mapTotal: total value of a volumetric map

Given a function of the Cartesian coordinates φ(x) = φ(x,y,z), a mapTotal collective variable
component Φ(X) is defined as the sum of the values of the function φ(x) evaluated at the coordi-
nates of each atom, xi:

Φ(X) =
N

∑
i=1

wiφ (xi) (21)

where wi are weights assigned to each variable (1 by default). This formulation allows, for exam-
ple, to “count” the number of atoms within a region of space by using a positive-valued function
φ (x), such as for example the number of water molecules in a hydrophobic cavity [14].

Because the volumetric map itself and the atoms affected by it are defined externally to Colvars,
this component has a very limited number of keywords.
List of keywords (see also 5.2, 5.15, 5.16 and 5.18 for additional options):
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• mapID — Specify the numeric index of the volumetric map to use as a colvar

[ non-negative integer, context: mapTotal ]

The value of this option specifies the numeric index of the volumetric map to use for this
collective variable component. The map referred to must be already loaded before using this
option.

• atoms — Group of atoms defining this function

[ Atom group, context: mapTotal ]

If defined, this option allows defining the set of atoms to be aligned onto the volumetric map
following the syntax described in section 6. This also allows, for instance, to express the
volumetric map in a rotated frame of reference (see 6.2). In VMD, this definition is required,
otherwise the mapTotal value is identically zero.

• atomWeights — Weights to assign to each atom

Default: all weights equal to 1 [ list of space-separated decimals, context: mapTotal ]

If defined, the value of this option assigns weights wi to the individual atoms in a mapTotal
variable. This option requires defining atoms explicitly, and the number of weights must
match the number of atoms.

• forceNoPBC — Use absolute rather than minimum-image distances? (see description)
Default: no

5.14.2 Multiple volumetric maps collective variables

To study processes that involve changes in shape of a macromolecular aggregate (for example,
deformations of lipid membranes) it is useful to define collective variables based on more than one
volumetric map at a time, measuring the relative similarity with each map while still achieving
correct thermodynamic sampling of each state.

This is achieved by combining multiple mapTotal components, each based on a differently-
shaped volumetric map, into a single collective variable ξ . To track transitions between states,
the contribution of each map to ξ should be discriminated from the others, for example by assign-
ing to it a different weight. The “Multi-Map” progress variable [14] uses a weight sum of these
components, using linearly-increasing weights:

ξ (X) =
K

∑
k=1

kΦk (X) =
K

∑
k=1

k
N

∑
i=1

φk (xi) (22)

where K is the number of maps employed and each Φk is a mapTotal component.
Here is a link to the Multi-Map tutorial page: https://colvars.github.io/multi-map/multi-map.

html
An example configuration for illustration purposes is also included below.
Example: transitions between macromolecular shapes using volumetric maps.
A series of map files, each representing a different shape, is loaded into NAMD:
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mGridForce yes
for { set k 1 } { $k <= $K } { incr k } {

mGridForcePotFile Shape_$k map_$k.dx # Density map of the k-th state
mGridForceFile Shape_$k atoms.pdb # PDB file used for atom selection
mGridForceCol Shape_$k O # Use the occupancy column of the PDB file atoms.pdb
mGridForceChargeCol Shape_$k B # Use beta as “charge” (default: electric charge)
mGridForceScale Shape_$k 0.0 0.0 0.0 # Do not use GridForces for this map

}

The GridForces maps thus loaded are then used to define the Multi-Map collective variable,
with coefficients ξk = k [14]:

# Collect the definition of all components into one string
set components "
for { set k 1 } { $k <= $K } { incr k } {

set components "${components}
mapTotal {

mapName Shape_$k
componentCoeff $k

}
}
"
# Use this string to define the variable
cv config "
colvar {

name shapes
${components}

}"

The above example illustrates a use case where a weighted sum (i.e. a linear combination)
is used to define a single variable from multiple components. Depending on the problem under
study, non-linear functions may be more appropriate. These may be defined a custom functions if
implemented (see 5.19), or scripted functions (see 5.20).

5.15 Shared keywords for all components

The following options can be used for any of the above colvar components in order to obtain a
polynomial combination or any user-supplied function provided by scriptedFunction.

• name — Name of this component

Default: type of component + numeric id [ string, context: any component ]

The name is an unique case-sensitive string which allows the Colvars module to identify
this component. This is useful, for example, when combining multiple components via a
scriptedFunction.It also defines the variable name representing the component’s value in
a customFunction expression.
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• scalable — Attempt to calculate this component in parallel?

Default: on, if available [ boolean, context: any component ]

If set to on (default), the Colvars module will attempt to calculate this component in parallel to
reduce overhead. Whether this option is available depends on the type of component: cur-
rently supported are distance, distanceZ, distanceXY, distanceVec, distanceDir, angle
and dihedral. This flag influences computational cost, but does not affect numerical results:
therefore, it should only be turned off for debugging or testing purposes.

5.16 Periodic components

Certain components, such as dihedral or dihedral, compute angles that lie in a periodic
interval between −180◦ and 180◦. When computing pairwise distances between values of those
angles (e.g. for the sake of computing restraint potentials, or sampling PMFs), periodicity is taken
into account by following the minimum-image convention.

Additionally, several other components, such as distanceZ, support optional periodicity if this
is provided in the configuration.

The following keywords can be used within periodic components, or within custom variables
(5.19), or wthin scripted variables 5.20).

• period — Period of the component

Default: 0.0, unless otherwise stated [ positive decimal, context: components with optional
periodicity ]

Setting this number enables the treatment of as a periodic component: by default, distanceZ
is not considered periodic. The keyword is supported, but irrelevant within dihedral or
spinAngle, because their period is always 360 degrees.

• wrapAround — Center of the wrapping interval for periodic variables

Default: 0.0 [ decimal, context: periodic components ]

By default, values of the periodic components are centered around zero, ranging from −P/2
to P/2, where P is the period. Setting this number centers the interval around this value. This
can be useful for convenience of output, or to set the walls for a harmonicWalls in an order
that would not otherwise be allowed.

Note: using linear/polynomial combinations of periodic components (see 5.18), or other custom
or scripted function may invalidate the periodicity. Use such combinations carefully: estimate the
range of possible values of each component in a given simulation, and make use of wrapAround
to limit this problem whenever possible.

5.17 Non-scalar components

When one of the following components are used, the defined colvar returns a value that is not
a scalar number:
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• distanceVec: 3-dimensional vector of the distance between two groups;

• distanceDir: 3-dimensional unit vector of the distance between two groups;

• orientation: 4-dimensional unit quaternion representing the best-fit rotation from a set of
reference coordinates.

The distance between two 3-dimensional unit vectors is computed as the angle between them.
The distance between two quaternions is computed as the angle between the two 4-dimensional
unit vectors: because the orientation represented by q is the same as the one represented by −q,
distances between two quaternions are computed considering the closest of the two symmetric
images.

Non-scalar components carry the following restrictions:

• Calculation of total forces (outputTotalForce option) is currently not implemented.

• Each colvar can only contain one non-scalar component.

• Binning on a grid (abf, histogram and metadynamics with useGrids enabled) is currently not
implemented for colvars based on such components.

Note: while these restrictions apply to individual colvars based on non-scalar components, no
limit is set to the number of scalar colvars. To compute multi-dimensional histograms and PMFs,
use sets of scalar colvars of arbitrary size.

5.17.1 Calculating total forces

In addition to the restrictions due to the type of value computed (scalar or non-scalar), a final
restriction can arise when calculating total force (outputTotalForce option or application of a abf
bias). total forces are available currently only for the following components: distance, distanceZ,
distanceXY, angle, dihedral, rmsd, eigenvector and gyration.

5.18 Linear and polynomial combinations of components

To extend the set of possible definitions of colvars ξ (r), multiple components qi(r) can be
summed with the formula:

ξ (r) = ∑
i

ci[qi(r)]ni (23)

where each component appears with a unique coefficient ci (1.0 by default) the positive integer
exponent ni (1 by default).

Any set of components can be combined within a colvar, provided that they return the same
type of values (scalar, unit vector, vector, or quaternion). By default, the colvar is the sum of
its components. Linear or polynomial combinations (following equation (23)) can be obtained by
setting the following parameters, which are common to all components:
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• componentCoeff — Coefficient of this component in the colvar

Default: 1.0 [ decimal, context: any component ]

Defines the coefficient by which this component is multiplied (after being raised to componentExp)
before being added to the sum.

• componentExp — Exponent of this component in the colvar

Default: 1 [ integer, context: any component ]

Defines the power at which the value of this component is raised before being added to the
sum. When this exponent is different than 1 (non-linear sum), total forces and the Jacobian
force are not available, making the colvar unsuitable for ABF calculations (eABF remains
possible).

Example: To define the average of a colvar across different parts of the system, simply define
within the same colvar block a series of components of the same type (applied to different atom
groups), and assign to each component a componentCoeff of 1/N.

5.19 Custom functions

Collective variables may be defined by specifying a custom function of multiple components,
i.e. an analytical expression that is more general than the linear combinations described in 5.18.
Such expression is parsed and calculated by Lepton, the lightweight expression parser written
by Peter Eastman (https://simtk.org/projects/lepton) that produces efficient evaluation rou-
tines for both the expression and its derivatives. Although Lepton is generally available in most
applications and builds where Colvars is included, it is best to check section 10 to confirm.

• customFunction — Compute colvar as a custom function of its components

[ string, context: colvar ]

Mathematical expression to define the colvar as a closed-form function of its colvar compo-
nents. See below for the detailed syntax of Lepton expressions. Multiple mentions of this
keyword can be used to define a vector variable (as in the example below).

• customFunctionType — Type of value returned by the custom function

Default: scalar [ string, context: colvar ]

With this flag, the user may specify whether the colvar is a scalar or one of the following vec-
tor types: vector3 (a 3D vector), unit_vector3 (a normalized 3D vector), or unit_quaternion
(a normalized quaternion), or vector. Note that the scalar and vector cases are not neces-
sary, as they are detected automatically.

The expression may use the collective variable components as variables, referred to by their
user-defined name. Scalar elements of vector components may be accessed by appending a 1-
based index to their name, as in the example below. When implementing generic functions of
Cartesian coordinates rather than functions of existing components, the cartesian component
may be particularly useful. A scalar-valued custom variable may be manually defined as periodic
by providing the keyword period, and the optional keyword wrapAround, with the same meaning
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as in periodic components (see 5.16 for details). A vector variable may be defined by specifying
the customFunction parameter several times: each expression defines one scalar element of the
vector colvar, as in this example:

colvar {
name custom

# A 2-dimensional vector function of a scalar x and a 3-vector r
customFunction cos(x) * (r1 + r2 + r3)
customFunction sqrt(r1 * r2)

distance {
name x
group1 { atomNumbers 1 }
group2 { atomNumbers 50 }

}
distanceVec {

name r
group1 { atomNumbers 10 11 12 }
group2 { atomNumbers 20 21 22 }

}
}

Numeric constants may be given in either decimal or exponential form (e.g. 3.12e-2). An
expression may be followed by definitions for intermediate values that appear in the expression,
separated by semicolons. For example, the expression:
aˆ2 + a*b + bˆ2; a = a1 + a2; b = b1 + b2
is exactly equivalent to:
(a1 + a2)ˆ2 + (a1 + a2) * (b1 + b2) + (b1 + b2)ˆ2.
The definition of an intermediate value may itself involve other intermediate values. All uses of a
value must appear before that value’s definition.

Lepton supports the usual arithmetic operators +, -, *, /, and ˆ (power), as well as the following
functions:
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sqrt Square root
exp Exponential
log Natural logarithm
erf Error function
erfc Complementary error function
sin Sine (angle in radians)
cos Cosine (angle in radians)
sec Secant (angle in radians)
csc Cosecant (angle in radians)
tan Tangent (angle in radians)
cot Cotangent (angle in radians)
asin Inverse sine (in radians)
acos Inverse cosine (in radians)
atan Inverse tangent (in radians)
atan2 Two-argument inverse tangent (in radians)
sinh Hyperbolic sine
cosh Hyperbolic cosine
tanh Hyperbolic tangent
abs Absolute value
floor Floor
ceil Ceiling
min Minimum of two values
max Maximum of two values
delta delta(x) = 1 if x = 0, 0 otherwise
step step(x) = 0 if x < 0, 1 if x >= 0
select select(x,y,z) = z if x = 0, y otherwise

5.20 Scripted functions

When scripting is supported (default in VMD), a colvar may be defined as a scripted function
of its components, rather than a linear or polynomial combination. When implementing generic
functions of Cartesian coordinates rather than functions of existing components, the cartesian
component may be particularly useful. A scalar-valued scripted variable may be manually defined
as periodic by providing the keyword period, and the optional keyword wrapAround, with the same
meaning as in periodic components (see 5.16 for details).

An example of elaborate scripted colvar is given in example 10, in the form of path-based
collective variables as defined by Branduardi et al[11] (Section 5.11.3).

• scriptedFunction — Compute colvar as a scripted function of its components

[ string, context: colvar ]

If this option is specified, the colvar will be computed as a scripted function of the values of its
components. To that effect, the user should define two Tcl procedures: calc_<scriptedFunction>
and calc_<scriptedFunction>_gradient, both accepting as many parameters as the colvar
has components. Values of the components will be passed to those procedures in the order
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defined by their sorted name strings. Note that if all components are of the same type, their
default names are sorted in the order in which they are defined, so that names need only
be specified for combinations of components of different types. calc_<scriptedFunction>
should return one value of type <scriptedFunctionType>, corresponding to the colvar value.
calc_<scriptedFunction>_gradient should return a Tcl list containing the derivatives of
the function with respect to each component. If both the function and some of the compo-
nents are vectors, the gradient is really a Jacobian matrix that should be passed as a linear
vector in row-major order, i.e. for a function fi(x j): ∇x f1∇x f2 · · · .

• scriptedFunctionType — Type of value returned by the scripted colvar

Default: scalar [ string, context: colvar ]

If a colvar is defined as a scripted function, its type is not constrained by the types of its
components. With this flag, the user may specify whether the colvar is a scalar or one of the
following vector types: vector3 (a 3D vector), unit_vector3 (a normalized 3D vector), or
unit_quaternion (a normalized quaternion), or vector (a vector whose size is specified by
scriptedFunctionVectorSize). Non-scalar values should be passed as space-separated
lists.

• scriptedFunctionVectorSize — Dimension of the vector value of a scripted colvar

[ positive integer, context: colvar ]

This parameter is only valid when scriptedFunctionType is set to vector. It defines the
vector length of the colvar value returned by the function.

5.21 Defining grid parameters for a colvar

Many algorithms require the definition of two boundaries and a bin width for each colvar, which
are necessary to compute discrete “states” for a collective variable’s otherwise continuous values.
The following keywords define these parameters for a specific variable, and will be used by all bias
that refer to that variable unless otherwise specified. Some of these parameters can be set directly
within a bias configuration by inserting a grid block (7.1).

• lowerBoundary — Lower boundary of the colvar

Default: natural boundary of the function [ decimal, context: colvar ]

Defines the lowest end of the interval of “relevant” values for the variable. This number
can be, for example, a true physical boundary imposed by the choice of function (e.g. the
distance function is always larger than zero): if this is the case, and only one function
is used to define the variable, the default value of this number is set to the lowest end of
the range of values of that function, if available (see Section 5.1). Alternatively, this value
may be provided by the user, to represent for example the left-most point of a PMF cal-
culation along this variable. In the latter case, it is the user’s responsibility to either (a)
ensure the variable does not go significantly beyond the boundary (for example by adding a
harmonicWalls restraint, 7.10), or (b) instruct the code that this is a true physical boundary
by setting hardLowerBoundary.
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• upperBoundary — Upper boundary of the colvar

Default: natural boundary of the function [ decimal, context: colvar ]

Similarly to lowerBoundary, defines the highest of the “relevant” values of the variable.

• width — grid spacing, or unit of the variable

Default: 1.0 [ positive decimal, context: colvar ]

This number defines the width of a discrete “state” for a collective variable, and is used by
the many biasing methods to achieve different purposes. Histograms (7.13), ABF (7.3) and
metadynamics (7.6) all use this number as the initial choice for the grid spacing along this
variable. As a typical rule of thumb, width should be no larger than the standard deviation
of the colvar in an unbiased simulation (to characterize a local free-energy minimum with at
least two points).

Further, many restraints such as harmonic potentials (7.8), harmonic walls (7.10) and linear
restraints (7.11) also use this parameter to define the expected fluctuations of the colvar,
allowing to express the force constant in terms of this unit. This is most useful with multi-
dimensional restraints acting on variables that have very different units (for examples, work-
ing with length unit and degrees ◦ simultaneously): a single force constant can be used for
all, which is converted to the respective unit of each variable when forces are applied (the
are printed at initialization time.

• hardLowerBoundary — Whether the lower boundary is the physical lower limit

Default: provided by the component [ boolean, context: colvar ]

When the colvar has a “natural” boundary (for example, a distance colvar cannot go be-
low 0) this flag is automatically enabled. For more complex variable definitions, or when
lowerBoundary is provided directly by the user, it may be useful to set this flag explicitly. This
option does not affect simulation results, but enables some internal optimizations by letting
the code know that the variable is unable to cross the lower boundary, regardless of whether
restraints are applied to it.

• hardUpperBoundary — Whether the upper boundary is the physical upper limit of the colvar’s
values

Default: provided by the component [ boolean, context: colvar ]

Analogous to hardLowerBoundary.

• expandBoundaries — Allow to expand the two boundaries if needed

Default: off [ boolean, context: colvar ]

If defined, lowerBoundary and upperBoundary may be automatically expanded to accom-
modate colvar values that do not fit in the initial range. Currently, this option is used by the
metadynamics bias (7.6) to keep all of its hills fully within the grid. Enabling this option does
not affect any boundaries that are defined as “hard” (see above), or any boundaries that
span the full period of a periodic colvar.
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5.22 Trajectory output

• outputValue — Output a trajectory for this colvar

Default: on [ boolean, context: colvar ]

If colvarsTrajFrequency is non-zero, the value of this colvar is written to the trajectory file
every colvarsTrajFrequency steps in the column labeled “<name>”.

• outputVelocity — Output a velocity trajectory for this colvar

Default: off [ boolean, context: colvar ]

If colvarsTrajFrequency is defined, the finite-difference calculated velocity of this colvar are
written to the trajectory file under the label “v_<name>”.

• outputEnergy — Output an energy trajectory for this colvar

Default: off [ boolean, context: colvar ]

This option applies only to extended Lagrangian colvars. If colvarsTrajFrequency is de-
fined, the kinetic energy of the extended degree and freedom and the potential energy of
the restraining spring are are written to the trajectory file under the labels “Ek_<name>” and
“Ep_<name>”.

• outputTotalForce — Output a total force trajectory for this colvar

Default: off [ boolean, context: colvar ]

If colvarsTrajFrequency is defined, the total force on this colvar (i.e. the projection of all
atomic total forces onto this colvar — see equation (28) in section 7.3) are written to the
trajectory file under the label “fs_<name>”. For extended Lagrangian colvars, the “total
force” felt by the extended degree of freedom is simply the force from the harmonic spring.
Note: not all components support this option. The physical unit for this force is energy
unit /(colvar unit).

• outputAppliedForce — Output an applied force trajectory for this colvar

Default: off [ boolean, context: colvar ]

If colvarsTrajFrequency is defined, the total force applied on this colvar by Colvars biases
are written to the trajectory under the label “fa_<name>”. For extended Lagrangian colvars,
this force is actually applied to the extended degree of freedom rather than the geometric
colvar itself. The physical unit for this force is energy unit /(colvar unit).

5.23 Extended Lagrangian

The following options enable extended-system dynamics, where a colvar is coupled to an ad-
ditional degree of freedom (fictitious particle) by a harmonic spring. This extended coordinate
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masks the colvar and replaces it transparently from the perspective of biasing and analysis meth-
ods. Biasing forces are then applied to the extended degree of freedom, and the actual geometric
colvar (function of Cartesian coordinates) only feels the force from the harmonic spring. This is
particularly useful when combined with an abf bias to perform eABF simulations (7.4).

Note that for some biases (harmonicWalls, histogram), this masking behavior is controlled by
the keyword bypassExtendedLagrangian. Specifically for harmonicWalls, the default behavior is
to bypass extended Lagrangian coordinates and act directly on the actual colvars.

• extendedLagrangian — Add extended degree of freedom

Default: off [ boolean, context: colvar ]

Adds a fictitious particle to be coupled to the colvar by a harmonic spring. The fictitious
mass and the force constant of the coupling potential are derived from the parameters
extendedTimeConstant and extendedFluctuation, described below. Biasing forces on the
colvar are applied to this fictitious particle, rather than to the atoms directly. This implements
the extended Lagrangian formalism used in some metadynamics simulations [3]. .

• extendedFluctuation — Standard deviation between the colvar and the fictitious particle
(colvar unit)

[ positive decimal, context: colvar ]

Defines the spring stiffness for the extendedLagrangian mode, by setting the typical de-
viation between the colvar and the extended degree of freedom due to thermal fluctua-
tion. The spring force constant is calculated internally as kBT/σ2, where σ is the value
of extendedFluctuation.

• extendedTimeConstant — Oscillation period of the fictitious particle (fs)

Default: 200 [ positive decimal, context: colvar ]

Defines the inertial mass of the fictitious particle, by setting the oscillation period of the
harmonic oscillator formed by the fictitious particle and the spring. The period should be
much larger than the MD time step to ensure accurate integration of the extended particle’s
equation of motion. The fictitious mass is calculated internally as kBT (τ/2πσ)2, where τ is
the period and σ is the typical fluctuation (see above).

• extendedTemp — Temperature for the extended degree of freedom (K)

Default: thermostat temperature [ positive decimal, context: colvar ]

Temperature used for calculating the coupling force constant of the extended variable (see
extendedFluctuation) and, if needed, as a target temperature for extended Langevin dy-
namics (see extendedLangevinDamping). This should normally be left at its default value.

• extendedLangevinDamping — Damping factor for extended Langevin dynamics (ps−1)

Default: 1.0 [ positive decimal, context: colvar ]

If this is non-zero, the extended degree of freedom undergoes Langevin dynamics at tem-
perature extendedTemp. The friction force is minus extendedLangevinDamping times the
velocity. This is useful because the extended dynamics coordinate may heat up in the tran-
sient non-equilibrium regime of ABF. Use moderate damping values, to limit viscous friction
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(potentially slowing down diffusive sampling) and stochastic noise (increasing the variance
of statistical measurements). In doubt, use the default value.

• reflectingLowerBoundary — Whether the lower boundary reflects the extended Lagrangian
particle

Default: off [ boolean, context: colvar ]

This turns the specified lowerBoundary into a reflecting wall for the extended particle: upon
collision, the particle is reflected with opposite momentum.

• reflectingUpperBoundary — Whether the upper boundary reflects the extended Lagrangian
particle

Default: off [ boolean, context: colvar ]

This turns the specified upperBoundary into a reflecting wall for the extended particle: upon
collision, the particle is reflected with opposite momentum.

5.24 Multiple time-step variables

• timeStepFactor — Compute this colvar once in a certain number of timesteps

Default: 1 [ positive integer, context: colvar ]

Instructs this colvar to activate at a time interval equal to the base (MD) timestep times
timeStepFactor.[15] At other time steps, the value of the variable is not updated, and no
biasing forces are applied. Any forces exerted by biases are accumulated over the given
time interval, then applied as an impulse at the next update.

5.25 Backward-compatibility

• subtractAppliedForce — Do not include biasing forces in the total force for this colvar

Default: off [ boolean, context: colvar ]

If the colvar supports total force calculation (see 5.17.1), all forces applied to this colvar
by biases will be removed from the total force. This keyword allows to recover some of
the “system force” calculation available in the Colvars module before version 2016-08-10.
Please note that removal of all other external forces (including biasing forces applied to a
different colvar) is no longer supported, due to changes in the underlying simulation engines
(primarily NAMD). This option may be useful when continuing a previous simulation where
the removal of external/applied forces is essential. For all new simulations, the use of this
option is not recommended.
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5.26 Statistical analysis

Run-time calculations of statistical properties that depend explicitly on time can be performed
for individual collective variables. Currently, several types of time correlation functions, running av-
erages and running standard deviations are implemented. For run-time computation of histograms,
please see the histogram bias (7.13).

• corrFunc — Calculate a time correlation function?

Default: off [ boolean, context: colvar ]

Whether or not a time correlaction function should be calculated for this colvar.

• corrFuncWithColvar — Colvar name for the correlation function

[ string, context: colvar ]

By default, the auto-correlation function (ACF) of this colvar, ξi, is calculated. When this
option is specified, the correlation function is calculated instead with another colvar, ξ j, which
must be of the same type (scalar, vector, or quaternion) as ξi.

• corrFuncType — Type of the correlation function

Default: velocity [ velocity, coordinate or coordinate_p2, context: colvar ]

With coordinate or velocity, the correlation function Ci, j(t) =
〈
Π(ξi(t0),ξ j(t0 + t))

〉
is calcu-

lated between the variables ξi and ξ j, or their velocities. Π(ξi,ξ j) is the scalar product when
calculated between scalar or vector values, whereas for quaternions it is the cosine between
the two corresponding rotation axes. With coordinate_p2, the second order Legendre poly-
nomial, (3cos(θ)2−1)/2, is used instead of the cosine.

• corrFuncNormalize — Normalize the time correlation function?

Default: on [ boolean, context: colvar ]

If enabled, the value of the correlation function at t = 0 is normalized to 1; otherwise, it equals
to
〈
O(ξi,ξ j)

〉
.

• corrFuncLength — Length of the time correlation function

Default: 1000 [ positive integer, context: colvar ]

Length (in number of points) of the time correlation function.

• corrFuncStride — Stride of the time correlation function

Default: 1 [ positive integer, context: colvar ]

Number of steps between two values of the time correlation function.

• corrFuncOffset — Offset of the time correlation function

Default: 0 [ positive integer, context: colvar ]

The starting time (in number of steps) of the time correlation function (default: t = 0). Note:
the value at t = 0 is always used for the normalization.
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• corrFuncOutputFile — Output file for the time correlation function

Default: outputName.<name>.corrfunc.dat [ UNIX filename, context: colvar ]

The time correlation function is saved in this file.

• runAve — Calculate the running average and standard deviation

Default: off [ boolean, context: colvar ]

Whether or not the running average and standard deviation should be calculated for this
colvar.

• runAveLength — Length of the running average window

Default: 1000 [ positive integer, context: colvar ]

Length (in number of points) of the running average window.

• runAveStride — Stride of the running average window values

Default: 1 [ positive integer, context: colvar ]

Number of steps between two values within the running average window.

• runAveOutputFile — Output file for the running average and standard deviation

Default: outputName.<name>.runave.traj [ UNIX filename, context: colvar ]

The running average and standard deviation are saved in this file.
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6 Selecting atoms

To define collective variables, atoms are usually selected as groups. Each group is defined
using an identifying keyword that is unique in the context of the specific colvar component (e.g. for
a distance component, the two groups are identified by the group1 and group2 keywords).

The group’s identifying keyword is followed by a brace-delimited block containing selection
keywords and other parameters, one of which is name:

• name — Unique name for the atom group

[ string, context: atom group ]

This parameter defines a globally unique name for this atom group, which can be referred to
in the definition of other atom groups (including in other colvars) by invoking atomsOfGroup
as a selection keyword. This has two benefits: (1) it can make the configuration shorter
and more legible, and (2) several related atom groups can be defined using a common set
of atoms, so that this selection can be changed in one place, keeping all related groups
synchronized with the same atom set.

Other keywords are documented in the following sections.
In the example below, the gyration component uses the identifying keyword atoms to define

its associated group, which is defined based on the index group named “Protein-H”. Optionally,
the group is also given the unique name “my_protein”, so that atom groups defined later in the
Colvars configuration may refer to it.

colvar {
name rgyr
gyration {

atoms {
name my_protein
indexGroup Protein-H

}
}

}

6.1 Atom selection keywords

Selection keywords may be used individually or in combination with each other, and each can
be repeated any number of times. Selection is incremental: each keyword adds the corresponding
atoms to the selection, so that different sets of atoms can be combined. However, atoms included
by multiple keywords are only counted once. Below is an example configuration for an atom group
called “atoms”. Note: this is an unusually varied combination of selection keywords, demonstrating
how they can be combined together: most simulations only use one of them.
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atoms {

# add atoms 1 and 3 to this group (note: first atom in the system is 1)
atomNumbers {

1 3
}

# add atoms starting from 20 up to and including 50
atomNumbersRange 20-50
# add all the atoms with occupancy 2 in the file atoms.pdb
atomsFile atoms.pdb
atomsCol O
atomsColValue 2.0

# add all the C-alphas within residues 11 to 20 of segments "PR1" and "PR2"
psfSegID PR1 PR2
atomNameResidueRange CA 11-20
atomNameResidueRange CA 11-20
# add index group (requires a .ndx file to be provided globally)
indexGroup Water

}

The resulting selection includes atoms 1 and 3, those between 20 and 50, the Cα atoms
between residues 11 and 20 of the two segments PR1 and PR2, and those in the index group called
“Water”. The indices of this group are read from the file provided by the global keyword indexFile.

In the current version, the Colvars module does not manipulate VMD atom selections directly:
however, these can be converted to atom groups within the Colvars configuration string, using
selection keywords such as atomNumbers. The complete list of selection keywords available in
VMD is:

• atomNumbers — List of atom numbers

[ space-separated list of positive integers, context: atom group ]

This option adds to the group all the atoms whose numbers are in the list. The number of the
first atom in the system is 1: to convert from a VMD selection, use “atomselect get serial”.

• indexGroup — Name of index group to be used (GROMACS format)

[ string, context: atom group ]

If the name of an index file has been provided by indexFile, this option allows to select one
index group from that file: the atoms from that index group will be used to define the current
group.

• atomsOfGroup — Name of group defined previously

[ string, context: atom group ]

Refers to a group defined previously using its user-defined name. This adds all atoms of that
named group to the current group.
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• atomNumbersRange — Atoms within a number range

[ <Starting number>-<Ending number>, context: atom group ]

This option includes in the group all atoms whose numbers are within the range specified.
The number of the first atom in the system is 1.

• atomNameResidueRange — Named atoms within a range of residue numbers

[ <Atom name> <Starting residue>-<Ending residue>, context: atom group ]

This option adds to the group all the atoms with the provided name, within residues in the
given range.

• psfSegID — PSF segment identifier

[ space-separated list of strings (max 4 characters), context: atom group ]

This option sets the PSF segment identifier for atomNameResidueRange. Multiple values may
be provided, which correspond to multiple instances of atomNameResidueRange, in order of
their occurrence. This option is only necessary if a PSF topology file is used.

• atomsFile — PDB file name for atom selection

[ UNIX filename, context: atom group ]

This option selects atoms from the PDB file provided and adds them to the group according
to numerical flags in the column atomsCol. Note: the sequence of atoms in the PDB file
provided must match that in the system’s topology.

• atomsCol — PDB column to use for atom selection flags

[ O, B, X, Y, or Z, context: atom group ]

This option specifies which PDB column in atomsFile is used to determine which atoms are
to be included in the group.

• atomsColValue — Atom selection flag in the PDB column

[ positive decimal, context: atom group ]

If defined, this value in atomsCol identifies atoms in atomsFile that are included in the group.
If undefined, all atoms with a non-zero value in atomsCol are included.

• dummyAtom — Dummy atom position (length unit)

[ (x, y, z) triplet, context: atom group ]

Instead of selecting any atom, this option makes the group a virtual particle at a fixed position
in space. This is useful e.g. to replace a group’s center of geometry with a user-defined
position.

6.2 Moving frame of reference.
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The following options define an automatic calculation of an optimal translation (centerToReference)
or optimal rotation (rotateToReference), that superimposes the positions of this group to a pro-
vided set of reference coordinates. Alternately, centerToOrigin applies a translation to place the
geometric center of the group at (0, 0, 0). This can allow, for example, to effectively remove from
certain colvars the effects of molecular tumbling and of diffusion. Given the set of atomic positions
xi, the colvar ξ can be defined on a set of roto-translated positions x′i = R(xi−xC)+xref. xC is the
geometric center of the xi, R is the optimal rotation matrix to the reference positions and xref is the
geometric center of the reference positions.

Components that are defined based on pairwise distances are naturally invariant under global
roto-translations. Other components are instead affected by global rotations or translations: how-
ever, they can be made invariant if they are expressed in the frame of reference of a chosen
group of atoms, using the centerToReference and rotateToReference options. Finally, a few
components are defined by convention using a roto-translated frame (e.g. the minimal RMSD): for
these components, centerToReference and rotateToReference are enabled by default. In typical
applications, the default settings result in the expected behavior.

Warning on rotating frames of reference and periodic boundary conditions. rotateToReference
affects coordinates that depend on minimum-image distances in periodic boundary conditions
(PBC). After rotation of the coordinates, the periodic cell vectors become irrelevant: the rotated
system is effectively non-periodic. A safe way to handle this is to ensure that the relevant inter-
group distance vectors remain smaller than the half-size of the periodic cell. If this is not desirable,
one should avoid the rotating frame of reference, and apply orientational restraints to the refer-
ence group instead, in order to keep the orientation of the reference group consistent with the
orientation of the periodic cell.

Warning on rotating frames of reference and ABF. Note that centerToReference and rotateToReference
may affect the Jacobian derivative of colvar components in a way that is not taken into account by
default. Be careful when using these options in ABF simulations or when using total force values.

• centerToReference — Implicitly remove translations for this group

Default: off [ boolean, context: atom group ]

If this option is on, the center of geometry of the group will be aligned with that of the refer-
ence positions provided by either refPositions or refPositionsFile. Colvar components
will only have access to the aligned positions. Note: unless otherwise specified, rmsd and
eigenvector set this option to on by default.

• centerToOrigin — Implicitly remove translations for this group by keeping its center at the
origin

Default: off [ boolean, context: atom group ]

This option implies centerToReference. If this option is on, coordinates from the group will
be translated so that the center of geometry of the group remains at (0, 0, 0), except if
fittingGroup is enabled. In that case, the translation applied is the translation that brings
the center of geometry of the fitting group to (0, 0, 0).

• rotateToReference — Implicitly remove rotations for this group

Default: off [ boolean, context: atom group ]
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If this option is on, the coordinates of this group will be optimally superimposed to the refer-
ence positions provided by either refPositions or refPositionsFile. The rotation will be
performed around the center of geometry if centerToReference is on, or around the origin
otherwise. The algorithm used is the same employed by the orientation colvar compo-
nent [4]. Forces applied to the atoms of this group will also be implicitly rotated back to the
original frame. Note: unless otherwise specified, rmsd and eigenvector set this option to on
by default.

• refPositions — Reference positions for fitting (length unit)

[ space-separated list of (x, y, z) triplets, context: atom group ]

This option provides a list of reference coordinates for centerToReference and/or rotateToReference,
and is mutually exclusive with refPositionsFile. If only centerToReference is on, the list
may contain a single (x, y, z) triplet; if also rotateToReference is on, the list should be as
long as the atom group, and its order must match the order in which atoms were defined.

• refPositionsFile — File containing the reference positions for fitting

[ UNIX filename, context: atom group ]

This option provides a list of reference coordinates for centerToReference and/or rotateToReference,
and is mutually exclusive with refPositions. The acceptable file format is XYZ (4.7.3), which
is read in double precision. Alternatively, a PDB file may be read (see 4.7.4) using VMD’s
reader; however, due to the constraints of the PDB format PDB files are discouraged if the
precision of the reference coordinates is a concern.

• refPositionsCol — PDB column containing atom flags

[ O, B, X, Y, or Z, context: atom group ]

Like atomsCol for atomsFile, indicates which column to use to identify the atoms in refPositionsFile
(if this is a PDB file).

• refPositionsColValue — Atom selection flag in the PDB column

[ positive decimal, context: atom group ]

Analogous to atomsColValue, but applied to refPositionsCol.

• fittingGroup — Use an alternate set of atoms to define the roto-translation

Default: This atom group itself [ Atom group, context: atom group ]

If either centerToReference or rotateToReference is defined, this keyword defines an alter-
nate atom group to calculate the optimal roto-translation. Use this option to define a contin-
uous rotation if the structure of the group involved changes significantly (a typical symptom
would be the message “Warning: discontinuous rotation!”). Performance considerations:
note that enabling this option will result in projecting each of the atomic gradients of the
colvar (e.g. the RMSD) onto each the gradients of the roto-translation, which may be a com-
putationally expensive operation: see the closely related enableFitGradients for details.

The following example illustrates the use of fittingGroup as part of a Distance to Bound
Configuration (DBC) coordinate for use in ligand restraints for binding affinity calculations.[16] The
group called “atoms” describes coordinates of a ligand’s atoms, expressed in a moving frame of
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reference tied to a binding site (here within a protein). An optimal roto-translation is calculated
automatically by fitting the Cα trace of the rest of the protein onto the coordinates provided by a
PDB file. To define a DBC coordinate, this atom group would be used within an rmsd function.

# Example: defining a group "atoms" (the ligand) whose coordinates are expressed
# in a roto-translated frame of reference defined by a second group (the receptor)
atoms {

atomNumbers 1 2 3 4 5 6 7 # atoms of the ligand (1-based)

centerToReference yes
rotateToReference yes
fittingGroup {

# define the frame by fitting alpha carbon atoms
# in 2 protein segments close to the site
psfSegID PROT PROT
atomNameResidueRange CA 1-40
atomNameResidueRange CA 59-100

}
refPositionsFile all.pdb # can be the entire system

}

The following options have default values appropriate for the vast majority of applications, and
are only provided to support rare, special cases.

• enableFitGradients — Include the roto-translational contribution to colvar gradients

Default: on [ boolean, context: atom group ]

When either centerToReference or rotateToReference is on, the gradients of some colvars
include terms proportional to ∂R/∂xi (rotational gradients) and ∂xC/∂xi (translational gradi-
ents). By default, these terms are calculated and included in the total gradients; if this option
is set to off, they are neglected. In the case of a minimum RMSD component, this flag is
automatically disabled because the contributions of those derivatives to the gradients can-
cel out; other types of variable will require projecting each of the gradients of the variable
onto each of the gradients of the roto-translation (i.e. a O(N2) loop). When fittingGroup is
enabled, the computation is a O(N×M) loop for all variables, including RMSDs.

6.3 Treatment of periodic boundary conditions.

In simulations with periodic boundary conditions (PBCs), Colvars computes all distances be-
tween two points following the nearest-image convention, using PBC parameters provided by
VMD. However, many common variables rely on a consistent definition of the center of mass
or geometry of a group of atoms. This requires the use of unwrapped coordinates, which are not
subject to “jumps” when they diffuse across periodic boundaries.

In general, internal coordinate wrapping by VMD does not affect the calculation of colvars if
each atom group satisfies one or more of the following:
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i) it is composed by only one atom;

ii) it is used by a colvar component which does not make use of its center of geometry, but only
of pairwise distances (distanceInv, coordNum, hBond, alpha, dihedralPC);

iii) it is used by a colvar component that ignores the ill-defined Cartesian components of its
center of mass (such as the x and y components of a membrane’s center of mass modeled
with distanceZ).

If none of these conditions are met, wrapping may affect the calculation of collective variables: a
possible solution is to use pbc wrap or pbc unwrap (or the alternative qwrap or qunwrap: https:
//github.com/jhenin/qwrap) prior to processing a trajectory with the Colvars module.

6.4 Performance of a Colvars calculation based on group size.

In simulations performed with MD simulation engines such as GROMACS, LAMMPS or NAMD,
the computation of energy and forces is distributed (i.e., parallelized) over multiple nodes, as well
as over the CPU/GPU cores of each node. When Colvars is enabled, atomic coordinates are
collected on a single CPU core, where collective variables and their biases are computed. This
means that in the case of simulations that are already being run over large numbers of nodes, or
inside a GPU, a Colvars calculation may produce a significant overhead. This overhead comes
from the combined cost of two operation: transmitting atomic coordinates, and computing functions
of the same.

Performance can be improved in multiple ways:

• As a general rule, the size of atom groups should be kept relatively small (up to a few thou-
sands of atoms, depending on the size of the entire system in comparison). For example,
restraining a protein through a RMSD colvar defined over all of its atoms is only marginally
different than one defined over only the α carbon atoms, but the difference in computational
cost is much higher. To gain an estimate of the computational cost of a specific Colvars
configuration, one may use a test calculation of the same colvar in VMD (hint: use the time
Tcl command to measure the cost of running cv update).

• The calculation of variables, components and biases can be distributed over the processor
cores of the node where the Colvars module is executed. Currently, an equal weight is
assigned to each colvar, or to each component of those colvars that include more than
one component. The performance of simulations that use many colvars or components is
improved automatically. For simulations that use a single large colvar, it may be advisable
to partition it in multiple components, which will be then distributed across the available
cores. The messages “SMP parallelism is available” or “SMP parallelism is enabled”,
printed by Colvars at initialization time, indicate the availability or status of this feature (will
be supported in a future release of VMD). If available, the option is turned on by default, but
may be disabled using the keyword smp if required for debugging or troubleshooting.
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7 Biasing and analysis methods

A biasing or analysis method can be applied to existing collective variables by using the follow-
ing configuration:

<biastype> {
name <name>
colvars <xi1> <xi2> ...
<parameters>

}

The keyword <biastype> indicates the method of choice. There can be multiple instances of the
same method, e.g. using multiple harmonic blocks allows defining multiple restraints.

All biasing and analysis methods implemented recognize the following options:

• name — Identifier for the bias

Default: <type of bias><bias index> [ string, context: colvar bias ]

This string is used to identify the bias or analysis method in the output, and to name some
output files. Tip: although a unique name is assigned automatically, you are strongly encour-
aged to give a name to a bias that you may want to analyze later. For example, processing
a trajectory file (sec. 4.7.6) containing a harmonic restraint is much simpler with a clearly
identifiable name, like “smd” for a moving harmonic restraint or “us” for a static one.

• colvars — Collective variables involved

[ space-separated list of colvar names, context: colvar bias ]

This option selects by name all the variables to which this bias or analysis will be applied.

• outputEnergy — Write the current bias energy to the trajectory file

Default: off [ boolean, context: colvar bias ]

If this option is chosen and colvarsTrajFrequency is not zero, the current value of the
biasing energy will be written to the trajectory file during the simulation.

• outputFreq — Frequency (number of steps) at which output files are written

Default: colvarsRestartFrequency [ positive integer, context: colvar bias ]

If this bias produces aggregated data that needs to be written to disk (for example, a PMF),
this number specifies the number of steps after which these data are written to files. A value
of zero disables writing files for this bias during the simulation (except for outputEnergy,
which is controlled by colvarsTrajFrequency). All output files are also written at the end of
a simulation run, regardless of the value of this number. In VMD, this option has no effect.

• bypassExtendedLagrangian — Apply bias to actual colvars, bypassing extended coordi-
nates

Default: off [ boolean, context: colvar bias ]
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This option is implemented by the harmonicWalls and histogram biases. It is only relevant if
the bias is applied to one or several extended-Lagrangian colvars (5.23), for example within
an eABF (7.4) simulation. Usually, biases use the value of the extended coordinate as a
proxy for the actual colvar, and their biasing forces are applied to the extended coordinates
as well. If bypassExtendedLagrangian is enabled, the bias behaves as if there were no ex-
tended coordinates, and accesses the value of the underlying colvars, applying any biasing
forces along the gradients of those variables.

• stepZeroData — Accumulate data starting at step 0 of a simulation run

Default: off [ boolean, context: colvar bias ]

This option is meaningful for biases that record and accumulate data during a simulation,
such as ABF (7.3), metadynamics (7.6), histograms (7.13) and in general any bias that
accumulates free-energy samples with thermodynamic integration, or TI (7.2). When this
option is disabled (default), data will only be recorded into the bias after the first coordinate
update: this is generally the correct choice in simulation runs. Biasing energy and forces will
always be computed for all active biases, regardless of this option.

• scaledBiasingForce — Scale biasing force by a factor in an external histogram

Default: off [ boolean, context: colvar bias ]

If this option is set to on, the biasing force at each step will be scaled by a factor provided in
the grid of an external histogram. The histogram file is provided by scaledBiasingForceFactorsGrid.
It ought to be noted that if the variables are not in any grids of the histogram, the scaling fac-
tor is 1.0.

• scaledBiasingForceFactorsGrid — A histogram file with the scaling factor of biasing force
in each bin

[ string, context: colvar bias ]

If scaledBiasingForce is set to on, this option accepts the filename of the histogram file that
contains the scaling factors. The histogram file is expected to be in “multicolumn” format
(4.7.5), similar to the low-dimensional the PMF files written by metadynamics and ABF.

7.1 Defining grids for biasing and analysis methods

Several methods (histograms, ABF and eABF, optionally metadynamics) rely on discretizing
colvars on regular grids to represent functions such as probability distributions or free energy
surfaces.

Grid parameters are specific to each variable, and some of them may even be defined auto-
matically: for instance, periodic angles have default boundaries of -180◦ and 180◦. When not given
by default, boundaries may be also specified when defining the collective variable itself (5.21).

Each bias will use by default any colvar boundaries that are automatically defined or explicitly
given. Optionally, the bias may also contain a dedicated configuration block grid { ...} inside
its configuration. The options supported within the grid { ...} block are:

• lowerBoundary — Lower boundaries of the grid
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[ list of space-separated decimals, context: grid ]

This option is specified once, and takes as many parameters as there are colvars associated
with this bias. It defines the lower boundaries of the grid, overriding any values defined by
the lowerBoundary keyword of each colvar.

• upperBoundary — analogous to lowerBoundary

• width — Bin widths of the grid

[ list of space-separated decimals, context: grid ]

This option is specified once, and takes as many parameters as there are colvars associated
with this bias. It defines the bin widths of the grid along each dimension, overriding any
values defined by the width keyword of each colvar.

Example: Definition of custom grid parameters for a histogram. Note how some of the bound-
aries of the variables are automatically defined, but this histogram’s grid is custom-defined to also
specify a finer width and narrower boundaries.

colvar {
name r
# lowerBoundary 0.0 is automatically defined
upperBoundary 20.0
distance { ... }

}

colvar {
name theta
# lowerBoundary -180.0 is automatically defined
# upperBoundary 180.0 is automatically defined
dihedral { ... }

}

histogram {
name hist2d
colvars r theta
grid {

width 0.1 1.0
lowerBoundary 2.0 30.0
upperBoundary 10.0 90.0

}
}

7.2 Thermodynamic integration
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The methods implemented here provide a variety of estimators of conformational free-energies.
These are carried out at run-time, or with the use of post-processing tools over the generated out-
put files. The specifics of each estimator are discussed in the documentation of each biasing or
analysis method.

A special case is the traditional thermodynamic integration (TI) method, used for example to
compute potentials of mean force (PMFs). Most types of restraints (7.8, 7.10, 7.11, ...) as well as
metadynamics (7.6) can optionally use TI alongside their own estimator, based on the keywords
documented below.

• writeTIPMF — Write the PMF computed by thermodynamic integration

Default: off [ boolean, context: colvar bias ]

If the bias is applied to a variable that supports the calculation of total forces (see outputTotalForce
and 5.17.1), this option allows calculating the corresponding PMF by thermodynamic inte-
gration, and writing it to the file outputName.<name>.ti.pmf, where <name> is the name
of the bias and the contents of the file are in multicolumn text format (4.7.5). The total force
includes the forces applied to the variable by all bias, except those from this bias itself. If any
bias applies time-dependent forces besides the one using this option, an error is raised.

• writeTISamples — Write the free-energy gradient samples

Default: off [ boolean, context: colvar bias ]

This option allows to compute total forces for use with thermodynamic integration as done
by the keyword writeTIPMF. The names of the files containing the variables’ histogram and
mean thermodynamic forces are outputName.<name>.ti.count and outputName.<name>.ti.force,
respectively: these can be used by abf_integrate (see 7.3.5) or similar utility. Note that be-
cause the .force file contains mean forces instead of free-energy gradients, abf_integrate
<filename> -s -1.0 should be used. This option is on by default when writeTIPMF is on,
but can be enabled separately if the bias is applied to more than one variable, making not
possible the direct integration of the PMF at runtime. If any bias applies time-dependent
forces besides the one using this option, an error is raised.

In adaptive biasing force (ABF) (7.3) the above keywords are not recognized, because their
functionality is either included already (conventional ABF) or not available (extended-system ABF).

7.3 Adaptive Biasing Force

For a full description of the Adaptive Biasing Force method, see reference [17]. For details
about this implementation, see references [18] and [19]. When publishing research that makes
use of this functionality, please cite references [17] and [19].

An alternate usage of this feature is the application of custom tabulated biasing potentials to
one or more colvars. See inputPrefix and updateBias below.

Combining ABF with the extended Lagrangian feature (5.23) of the variables produces the
extended-system ABF variant of the method (7.4).

ABF is based on the thermodynamic integration (TI) scheme for computing free energy profiles.
The free energy as a function of a set of collective variables ξ = (ξi)i∈[1,n] is defined from the
canonical distribution of ξ , P(ξ ):
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A(ξ ) =− 1
β

lnP(ξ )+A0 (24)

In the TI formalism, the free energy is obtained from its gradient, which is generally calculated
in the form of the average of a force Fξ exerted on ξ , taken over an iso-ξ surface:

∇ξ A(ξ ) =
〈
−Fξ

〉
ξ

(25)

Several formulae that take the form of (25) have been proposed. This implementation relies
partly on the classic formulation [20], and partly on a more versatile scheme originating in a work
by Ruiz-Montero et al. [21], generalized by den Otter [22] and extended to multiple variables by
Ciccotti et al. [23]. Consider a system subject to constraints of the form σk(x) = 0. Let (vi)i∈[1,n] be
arbitrarily chosen vector fields (R3N → R3N) verifying, for all i, j, and k:

vi ·∇x ξ j = δi j (26)
vi ·∇x σk = 0 (27)

then the following holds [23]:

∂A
∂ξi

= 〈vi ·∇x V − kBT ∇x · vi〉ξ (28)

where V is the potential energy function. vi can be interpreted as the direction along which
the force acting on variable ξi is measured, whereas the second term in the average corresponds
to the geometric entropy contribution that appears as a Jacobian correction in the classic formal-
ism [20]. Condition (26) states that the direction along which the total force on ξi is measured is
orthogonal to the gradient of ξ j, which means that the force measured on ξi does not act on ξ j.

Equation (27) implies that constraint forces are orthogonal to the directions along which the free
energy gradient is measured, so that the measurement is effectively performed on unconstrained
degrees of freedom.

In the framework of ABF, Fξ is accumulated in bins of finite size δξ , thereby providing an
estimate of the free energy gradient according to equation (25). The biasing force applied along
the collective variables to overcome free energy barriers is calculated as:

FABF = α(Nξ )×∇x Ã(ξ ) (29)

where ∇x Ã denotes the current estimate of the free energy gradient at the current point ξ in
the collective variable subspace, and α(Nξ ) is a scaling factor that is ramped from 0 to 1 as the
local number of samples Nξ increases to prevent non-equilibrium effects in the early phase of the
simulation, when the gradient estimate has a large variance. See the fullSamples parameter
below for details.

As sampling of the phase space proceeds, the estimate ∇x Ã is progressively refined. The
biasing force introduced in the equations of motion guarantees that in the bin centered around ξ ,
the forces acting along the selected collective variables average to zero over time. Eventually, as
the underlying free energy surface is canceled by the adaptive bias, evolution of the system along
ξ is governed mainly by diffusion. Although this implementation of ABF can in principle be used in
arbitrary dimension, a higher-dimension collective variable space is likely to be difficult to sample
and visualize. Most commonly, the number of variables is one or two, sometimes three.
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7.3.1 ABF requirements on collective variables

The following conditions must be met for an ABF simulation to be possible and to produce an
accurate estimate of the free energy profile. Note that these requirements do not apply when using
the extended-system ABF method (7.4).

1. Only linear combinations of colvar components can be used in ABF calculations.

2. Availability of total forces is necessary. The following colvar components can be used in ABF
calculations: distance, distance_xy, distance_z, angle, dihedral, gyration, rmsd and
eigenvector. Atom groups may not be replaced by dummy atoms, unless they are excluded
from the force measurement by specifying oneSiteTotalForce, if available.

3. Mutual orthogonality of colvars. In a multidimensional ABF calculation, equation (26) must
be satisfied for any two colvars ξi and ξ j. Various cases fulfill this orthogonality condition:

• ξi and ξ j are based on non-overlapping sets of atoms.

• atoms involved in the force measurement on ξi do not participate in the definition of ξ j.
This can be obtained using the option oneSiteTotalForce of the distance, angle, and
dihedral components (example: Ramachandran angles φ , ψ).

• ξi and ξ j are orthogonal by construction. Useful cases are the sum and difference of
two components, or distance_z and distance_xy using the same axis.

4. Mutual orthogonality of components: when several components are combined into a colvar, it
is assumed that their vectors vi (equation (28)) are mutually orthogonal. The cases described
for colvars in the previous paragraph apply.

5. Orthogonality of colvars and constraints: equation 27 can be satisfied in two simple ways, if
either no constrained atoms are involved in the force measurement (see point 3 above) or
pairs of atoms joined by a constrained bond are part of an atom group which only intervenes
through its center (center of mass or geometric center) in the force measurement. In the
latter case, the contributions of the two atoms to the left-hand side of equation 27 cancel out.
For example, all atoms of a rigid TIP3P water molecule can safely be included in an atom
group used in a distance component.

7.3.2 Parameters for ABF

ABF depends on parameters from each collective variable to define the grid on which free
energy gradients are computed: see 5.21 for details. Alternately, grid parameters can be set
directly inside the abf block by inserting a grid sub-block, as explained in 7.1. Other parameters
to control the ABF runtime can be set in the ABF configuration block:

• name — same definition as name (biasing and analysis methods)

• colvars — same definition as colvars (biasing and analysis methods)
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• outputEnergy — same definition as outputEnergy (biasing and analysis methods)

• outputFreq — same definition as outputFreq (biasing and analysis methods)

• stepZeroData — same definition as stepZeroData (biasing and analysis methods)

• fullSamples — Number of samples in a bin prior to full application of the ABF

Default: 200 [ positive integer, context: abf ]

To avoid non-equilibrium effects due to large fluctuations of the force exerted along the
colvars, it is recommended to apply a biasing force only after a the estimate has started
converging. If fullSamples is non-zero, the applied biasing force is scaled by a factor α(Nξ )
between 0 and 1. If the number of samples Nξ in the current bin is higher than fullSamples,
the factor is one. If it is less than minSamples (by default, half of fullSamples), the factor is
zero and no bias is applied. Between those two thresholds, the factor follows a linear ramp
from 0 to 1: α(Nξ ) = (Nξ −minSamples)/(fullSamples−minSamples).

• minSamples — Number of samples in a bin prior to application of the ABF

Default: fullSamples / 2 [ positive integer, context: abf ]

See fullSamples.

• maxForce — Maximum magnitude of the ABF force

Default: disabled [ positive decimals (one per colvar), context: abf ]

This option enforces a cap on the magnitude of the biasing force effectively applied by this
ABF bias on each colvar. This can be useful in the presence of singularities in the PMF
such as hard walls, where the discretization of the average force becomes very inaccurate,
causing the colvar’s diffusion to get “stuck” at the singularity. To enable this cap, provide one
non-negative value for each colvar. The unit of force is energy unit /(colvar unit).

• hideJacobian — Remove geometric entropy term from calculated free energy gradient?

Default: no [ boolean, context: abf ]

In a few special cases, most notably distance-based variables, an alternate definition of the
potential of mean force is traditionally used, which excludes the Jacobian term describing
the effect of geometric entropy on the distribution of the variable. This results, for example,
in particle-particle potentials of mean force being flat at large separations. The Jacobian
term is exactly represented in equation (28) by the second term of the average, −kBT ∇x · vi.
Enabling the hideJacobian option causes the output data to follow the traditional potential
of mean force convention, by omitting this contribution from the measured free energy gra-
dients. To ensure uniform sampling despite the incomplete description of the free energy,
an additional biasing force that counteracts the Jacobian force is applied internally by the
colvar. Warning: using this option without detailed knowledge of the terms of equation (28)
is not recommended. Warning: a bug affecting Colvars version until October 2020 leads to
this term to be subtracted twice in the PMFs reported by conventional ABF. The bug does
not affect the simulated trajectory, and the correct PMF can be recovered by adding back
the term manually. Other than conventional ABF, the PMFs computed by other sampling
methods were never affected.
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• historyFreq — Frequency (in timesteps) at which ABF history files are accumulated

Default: 0 [ positive integer, context: abf ]

If this number is non-zero, the free energy gradient estimate and sampling histogram (and
the PMF in one-dimensional calculations) are written to files on disk at the given time inter-
val. History file names use the same prefix as output files, with “.hist” appended (output-
Name.hist.pmf). historyFreq must be a multiple of outputFreq.

• inputPrefix — Filename prefix for reading ABF data

[ list of strings, context: abf ]

If this parameter is set, for each item in the list, ABF tries to read a gradient and a sampling
files named <inputPrefix>.grad and <inputPrefix>.count. This is done at startup and
sets the initial state of the ABF algorithm. The data from all provided files is combined
appropriately. Also, the grid definition (min and max values, width) need not be the same
that for the current run. This command is useful to piece together data from simulations
in different regions of collective variable space, or change the colvar boundary values and
widths. Note that it is not recommended to use it to switch to a smaller width, as that will
leave some bins empty in the finer data grid. This option is NOT compatible with reading the
data from a restart file (cv load command).

• applyBias — Apply the ABF bias?

Default: yes [ boolean, context: abf ]

If this is set to no, the calculation proceeds normally but the adaptive biasing force is not
applied. Data is still collected to compute the free energy gradient. This is mostly intended
for testing purposes, and should not be used in routine simulations.

• updateBias — Update the ABF bias?

Default: yes [ boolean, context: abf ]

If this is set to no, the initial biasing force (e.g. read from a restart file or through inputPrefix)
is not updated during the simulation. As a result, a constant bias is applied. This can be
used to apply a custom, tabulated biasing potential to any combination of colvars. To that
effect, one should prepare a gradient file containing the gradient of the potential to be applied
(negative of the bias force), and a count file containing only values greater than fullSamples.
These files must match the grid parameters of the colvars.

7.3.3 Multiple-walker ABF

This implements the multiple-walker ABF scheme described in [24]. The references for this
implementation are [25] and [26]. This feature requires that VMD be compiled and executed with
multiple-replica support.

If shared is enabled, the total force samples will be synchronized among all replicas at inter-
vals defined by sharedFreq. Each replica maintains a separate buffer of total force samples that
determine the biasing force. Every sharedFreq steps, the replicas communicate the samples that
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have been gathered since the last synchronization time, ensuring all replicas apply a similar bias-
ing force. Thus, it is as if total force samples among all replicas are gathered in a single shared
buffer. Shared ABF allows all replicas to benefit from the sampling done by other replicas and can
lead to faster convergence of the biasing force.

Output files of multiple-walker ABF. In multiple-walker ABF runs, since Colvars version 2024-
01-06, each walker outputs gradient and count files containing only data collected locally. In
addition, the first walker outputs the collected data using the common prefix, with an additional
".all" string (i.e. file names ending with ".all.count", ".all.grad" etc.).

• shared — Apply multiple-walker ABF, sharing force samples among the replicas?

Default: no [ boolean, context: abf ]

Enable sharing of ABF data between replicas, in a multi-replica simulation.

• sharedFreq — Frequency (in timesteps) at which force samples are synchronized among
the replicas

Default: outputFreq [ positive integer or zero, context: abf ]

Every sharedFreq steps, the replicas communicate the samples that have been gathered
since the last synchronization time. Because this forces the replicas to synchronize, small
values of this parameter may slightly reduce the overall throughput, especially on systems
with unequal performance.

7.3.4 Output files

The ABF bias produces the following files, all in multicolumn text format (4.7.5):

• outputName.grad: current estimate of the free energy gradient (grid), in multicolumn;

• outputName.count: histogram of samples collected, on the same grid;

• outputName.pmf: integrated free energy profile or PMF (for dimension 1, and dimension 2
or 3).

Also in the case of one-dimensional calculations, the ABF bias can report its current energy
via outputEnergy; in higher dimensions, such computation is not implemented and the energy
reported is zero.

If several ABF biases are defined concurrently, their name is inserted to produce unique file-
names for output, as in outputName.abf1.grad. This should not be done routinely and could lead
to meaningless results: only do it if you know what you are doing!

If the colvar space has been partitioned into sections (windows) in which independent ABF sim-
ulations have been run, the resulting data can be merged using the inputPrefix option described
above (a run of 0 steps is enough).
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7.3.5 Multidimensional free energy surfaces

The ABF method only produces an estimate of the free energy gradient. The free energy
surface itself can be computed depending on the value of integrate and related options.

• integrate — Integrate free energy surface from ABF gradients (dim < 3)

Default: yes [ boolean, context: abf ]

This option, active by default when the dimension of the colvar space is 3 or less, enables
the calculation of an integrated free energy surface every time ABF output files are written.
In dimension 2 or 3, integration is performed by solving a Poisson equation: [27]

∇
2At = ∇ ·Gt (30)

wehere Gt is the estimated gradient at time t, and At is corresponding free energy surface.
The free energy surface is written under the file name <outputName>.pmf, in a plain text for-
mat (see 4.7.5) that can be read by most data plotting and analysis programs (e.g. Gnuplot).
Periodic boundary conditions are applied to periodic coordinates, and Neumann boundary
conditions otherwise (imposed free energy gradient at the boundary of the domain). The grid
used for free energy discretization is extended by one point along non-periodic coordinates,
but not along periodic coordinates. See ref. [27] for details.

• integrateTol — Tolerance for free energy integration

Default: 1e-6 [ positive decimal, context: abf ]

The conjugate gradients algorithm used to integrate the free energy surface is stopped when
the RMS error reaches integrateTol.

• integrateMaxIterations — Maximum iterations for free energy integration

Default: 10000 [ integer, context: abf ]

The conjugate gradients algorithm used to integrate the free energy surface is stopped
when the number of iterations reaches integrateMaxIterations, unless the RMS error has
reached integrateTol before.

In dimension 4 or greater, integrating the discretized gradient becomes non-trivial. The stan-
dalone utility abf_integrate is provided to perform that task. Because 4D ABF calculations are
uncommon, this tool is practically deprecated by the Poisson integration described above.

abf_integrate reads the gradient data and uses it to perform a Monte-Carlo (M-C) simulation
in discretized collective variable space (specifically, on the same grid used by ABF to discretize the
free energy gradient). By default, a history-dependent bias (similar in spirit to metadynamics) is
used: at each M-C step, the bias at the current position is incremented by a preset amount (the hill
height). Upon convergence, this bias counteracts optimally the underlying gradient; it is negated
to obtain the estimate of the free energy surface.

abf_integrate is invoked using the command-line:
abf_integrate <gradient_file> [-n <nsteps>] [-t <temp>] [-m (0|1)] [-h <hill_height>] [-f <factor>]

The gradient file name is provided first, followed by other parameters in any order. They are
described below, with their default value in square brackets:
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• -n: number of M-C steps to be performed; by default, a minimal number of steps is chosen
based on the size of the grid, and the integration runs until a convergence criterion is satisfied
(based on the RMSD between the target gradient and the real PMF gradient)

• -t: temperature for M-C sampling; expects kcal/mol as energy unit (unrelated to the simula-
tion temperature) [500 K]

• -s: scaling factor for the gradients; when using a histogram of total forces obtained from
outputTotalForce or the .force file written by writeTISamples, a scaling factor of -1 should
be used [1.0]

• -m: use metadynamics-like biased sampling? (0 = false) [1]

• -h: increment for the history-dependent bias (“hill height”) [0.01 kcal/mol]

• -f: if non-zero, this factor is used to scale the increment stepwise in the second half of the
M-C sampling to refine the free energy estimate [0.5]

Using the default values of all parameters should give reasonable results in most cases.

abf_integrate produces the following output files:

• <gradient_file>.pmf: computed free energy surface

• <gradient_file>.histo: histogram of M-C sampling (not usable in a straightforward way if
the history-dependent bias has been applied)

• <gradient_file>.est: estimated gradient of the calculated free energy surface (from finite
differences)

• <gradient_file>.dev: deviation between the user-provided numerical gradient and the ac-
tual gradient of the calculated free energy surface. The RMS norm of this vector field is used
as a convergence criterion and output periodically during integration.

Note: Typically, the “deviation” vector field does not vanish as the integration converges. This
happens because the numerical estimate of the gradient does not exactly derive from a potential,
due to numerical approximations used to obtain it (finite sampling and discretization on a grid).
See Ref.[27] for details.

7.4 Extended-system Adaptive Biasing Force (eABF)

Extended-system ABF (eABF) is a variant of ABF (7.3) where the bias is not applied directly to
the collective variable, but to an extended coordinate (“fictitious variable”) λ that evolves dynami-
cally according to Newtonian or Langevin dynamics. Such an extended coordinate is enabled for a
given colvar using the extendedLagrangian and associated keywords (5.23). The theory of eABF
and the present implementation are documented in detail in reference [28].

Defining an ABF bias on a colvar wherein the extendedLagrangian option is active will perform
eABF automatically; there is no dedicated option.

The extended variable λ is coupled to the colvar z = ξ (q) by the harmonic potential (k/2)(z−
λ )2. Under eABF dynamics, the adaptive bias on λ is the running estimate of the average spring
force:

Fbias(λ ∗) = 〈k(λ − z)〉
λ ∗ (31)
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where the angle brackets indicate a canonical average conditioned by λ = λ ∗. At long simulation
times, eABF produces a flat histogram of the extended variable λ , and a flattened histogram of ξ ,
whose exact shape depends on the strength of the coupling as defined by extendedFluctuation
in the colvar.

Coupling should be strong enough that the bias helps overcome barriers along the colvar.[28]
A value of extendedFluctuation equal to the bin width is often reasonable. In the limit of strong
coupling (small extendedFluctuation), the eABF free energy surface (.pmf file) becomes close
to the true one, making the asymptotically more accurate but noisier CZAR estimator (.czar.pmf
file) unnecessary. In practice, we recommend comparing these two free energy surfaces to decide
which one to use.

Distribution of the colvar may be assessed by plotting its histogram, which is written to the
outputName.zcount file in every eABF simulation. Note that a histogram bias (7.13) applied to
an extended-Lagrangian colvar will access the extended degree of freedom λ , not the original
colvar ξ ; however, the joint histogram may be explicitly requested by listing the name of the colvar
twice in a row within the colvars parameter of the histogram block.

The eABF PMF is that of the coordinate λ , it is not exactly the free energy profile of ξ . That
quantity can be calculated based on the CZAR estimator.

7.4.1 CZAR estimator of the free energy

The corrected z-averaged restraint (CZAR) estimator is described in detail in reference [28].
It is computed automatically in eABF simulations, regardless of the number of colvars involved.
Note that ABF may also be applied on a combination of extended and non-extended colvars; in
that case, CZAR still provides an unbiased estimate of the free energy gradient.

CZAR estimates the free energy gradient as:

A′(z) =− 1
β

d ln ρ̃(z)
dz

+ k(〈λ 〉z− z). (32)

where z = ξ (q) is the colvar, λ is the extended variable harmonically coupled to z with a force
constant k, and ρ̃(z) is the observed distribution (histogram) of z, affected by the eABF bias.

Parameters for the CZAR estimator are:

• CZARestimator — Calculate CZAR estimator of the free energy?

Default: yes [ boolean, context: abf ]

This option is only available when ABF is performed on extended-Lagrangian colvars. When
enabled, it triggers calculation of the free energy following the CZAR estimator.

• writeCZARwindowFile — Write internal data from CZAR to a separate file?

Default: no [ boolean, context: abf ]

When this option is enabled, eABF simulations will write a file containing the z-averaged
restraint force under the name outputName.zgrad. The same information is always included
in the colvars state file, which is sufficient for restarting an eABF simulation. These separate
file is only useful when joining adjacent windows from a stratified eABF simulation, either to
continue the simulation in a broader window or to compute a CZAR estimate of the PMF over
the full range of the coordinate(s). Important warning. Unbiased free-energy estimators
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from eABF dynamics rely on some form of sampling histogram. When running stratified
(windowed) calculations this histogram becomes discontinuous, and as a result the free
energy gradient estimated by CZAR is inaccurate at the window boundary, resulting in visible
"blips" in the PMF. As a workaround, we recommend manually replacing the two free energy
gradient values at the boundary, either with the ABF values from .grad files (accurate in the
limit of tight coupling), or with values interpolated for the neighboring values of the CZAR
gradient.

Similar to ABF, the CZAR estimator produces two output files in multicolumn text format (4.7.5):

• outputName.czar.grad: current estimate of the free energy gradient (grid), in multicolumn;

• outputName.czar.pmf: only for one-dimensional calculations, integrated free energy profile
or PMF.

The sampling histogram associated with the CZAR estimator is the z-histogram, which is written
in the file outputName.zcount.

7.5 Adiabatic Bias Molecular Dynamics (ABMD)

This implements the Adiabatic Bias Molecular Dynamics (ABMD) method of Marchi and Bal-
lone [29], sometimes referred to as ratchet-and-pawl or ratcheted MD. ABMD is a non-equilibrium
process that enhances the motion of a scalar colvar in a given direction. For simplicity, the case
of an increasing value is described below, but enhancing downward motion of the variable is also
supported via the decreasing flag.

ABMD does not directly push the variable forward, but prevents it from backtracking by applying
a time-dependent half-harmonic potential Vt , the center of which is the highest value attained by
the variable so far (its high-water mark). This design implies that the bias is conservative at all
times and therefore exerts zero net work, hence the “adiabatic” qualifier:

Vt(ξt) =

{ 1
2

k
(
ξt −ξ ref

t
)2 if ξt < ξ ref

t

0 otherwise
(33)

where ξ ref
t is the high-water mark at time t, bounded by a user-defined stopping value ξ stop:

ξ
ref
t = min

(
t

max
s=0

ξs,ξ
stop
)
. (34)

Note: because the ABMD potential in eq. 33 is never defined for more than one variable, no
internal unit conversion is applied to k: this behavior is different from other restraints available in
Colvars, such as the harmonic wall restraints in 7.10.

Besides the name of the biased variable specified by the colvars keyword, the tunable pa-
rameters of ABMD are the force constant k and the stopping value ξ stop, set by the following user
keywords:

• forceConstant — Force constant for the half-harmonic bias

[ positive decimal, context: abmd ]

The value of k. Stronger values result if faster motion of the coordinate, along more biased
pathways.
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• stoppingValue — Value beyong which the reference value is not updated

[ decimal, context: abmd ]

This sets the value of ξ stop. It is useful to prevent the variable from reaching unrealistic values
after the relevant range has been covered.

• decreasing — Should the variable decrease over time?

Default: no [ boolean, context: abmd ]

This is used to make ABMD enhance motion toward lower colvar values. When enabled, it
reverses the shape of the half-harmonic potential, and makes the reference value follow the
minimum of the variable.

ABMD also supports the following common bias parameters:

• name — same definition as name (biasing and analysis methods)

• colvars — same definition as colvars (biasing and analysis methods)

• outputEnergy — same definition as outputEnergy (biasing and analysis methods)

• outputFreq — same definition as outputFreq (biasing and analysis methods)

7.6 Metadynamics

The metadynamics method uses a history-dependent potential [30] that generalizes to any type
of colvars the conformational flooding [31] and local elevation [32] methods, originally formulated
to use as colvars the principal components of a covariance matrix or a set of dihedral angles,
respectively. The metadynamics potential on the colvars ξ = (ξ1,ξ2, . . . ,ξNcv) is defined as:

Vmeta (ξ (t)) =
t ′<t

∑
t ′=δ t,2δ t,...

W
Ncv

∏
i=1

exp

(
−(ξi(t)−ξi(t ′))2

2σ2
ξi

)
, (35)

where Vmeta is the history-dependent potential acting on the current values of the colvars ξ , and
depends only parametrically on the previous values of the colvars. Vmeta is constructed as a sum
of Ncv-dimensional repulsive Gaussian “hills”, whose height is a chosen energy constant W , and
whose centers are the previously explored configurations (ξ (δ t),ξ (2δ t), . . .).

During the simulation, the system evolves towards the nearest minimum of the “effective” po-
tential of mean force Ã(ξ ), which is the sum of the “real” underlying potential of mean force A(ξ )
and the the metadynamics potential, Vmeta(ξ ). Therefore, at any given time the probability of ob-
serving the configuration ξ ∗ is proportional to exp

(
−Ã(ξ ∗)/κBT

)
: this is also the probability that a

new Gaussian “hill” is added at that configuration. If the simulation is run for a sufficiently long time,
each local minimum is canceled out by the sum of the Gaussian “hills”. At that stage the “effective”
potential of mean force Ã(ξ ) is constant, and −Vmeta(ξ ) is an estimator of the “real” potential of
mean force A(ξ ), save for an additive constant:

A(ξ ) ' −Vmeta(ξ )+K (36)
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Such estimate of the free energy can be provided by enabling writeFreeEnergyFile. Assum-
ing that the set of collective variables includes all relevant degrees of freedom, the predicted error
of the estimate is a simple function of the correlation times of the colvars τξi , and of the user-
defined parameters W , σξi and δ t [33]. In typical applications, a good rule of thumb can be to
choose the ratio W/δ t much smaller than κBT/τ

ξ
, where τ

ξ
is the longest among ξ ’s correlation

times: σξi then dictates the resolution of the calculated PMF.
If the metadynamics parameters are chosen correctly, after an equilibration time, te, the esti-

mator provided by eq. 36 oscillates on time around the “real” free energy, thereby a better estimate
of the latter can be obtained as the time average of the bias potential after te [34, 35]:

A(ξ ) = − 1
ttot − te

∫ ttot

te
Vmeta(ξ , t)dt (37)

where te is the time after which the bias potential grows (approximately) evenly during the simula-
tion and ttot is the total simulation time. The free energy calculated according to eq. 37 can thus be
obtained averaging on time multiple time-dependent free energy estimates, that can be printed out
through the keyword keepFreeEnergyFiles. An alternative is to obtain the free energy profiles by
summing the hills added during the simulation; the hills trajectory can be printed out by enabling
the option writeHillsTrajectory.

7.6.1 Treatment of the PMF boundaries

In typical scenarios the Gaussian hills of a metadynamics potential are interpolated and summed
together onto a grid, which is much more efficient than computing each hill independently at ev-
ery step (the keyword useGrids is on by default). This numerical approximation typically yields
negligible errors in the resulting PMF [1]. However, due to the finite thickness of the Gaussian
function, the metadynamics potential would suddenly vanish each time a variable exceeds its grid
boundaries.

To avoid such discontinuity the Colvars metadynamics code will keep an explicit copy of each
hill that straddles a grid’s boundary, and will use it to compute metadynamics forces outside the
grid. This measure is taken to protect the accuracy and stability of a metadynamics simulation,
except in cases of “natural” boundaries (for example, the [0 : 180] interval of an angle colvar) or
when the flags hardLowerBoundary and hardUpperBoundary are explicitly set by the user. Un-
fortunately, processing explicit hills alongside the potential and force grids could easily become
inefficient, slowing down the simulation and increasing the state file’s size.

In general, it is a good idea to define a repulsive potential to avoid hills from coming too close
to the grid’s boundaries, for example as a harmonicWalls restraint (see 7.10).

Example: Using harmonic walls to protect the grid’s boundaries.

colvar {
name r
distance { ... }
upperBoundary 15.0
width 0.2

}
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metadynamics {
name meta_r
colvars r
hillWeight 0.001
hillWidth 2.0

}

harmonicWalls {
name wall_r
colvars r
upperWalls 13.0
upperWallConstant 2.0

}

In the colvar r, the distance function used has a lowerBoundary automatically set to 0 by
default, thus the keyword lowerBoundary itself is not mandatory and hardLowerBoundary is set
to yes internally. However, upperBoundary does not have such a “natural” choice of value. The
metadynamics potential meta_r will individually process any hill whose center is too close to the
upperBoundary, more precisely within fewer grid points than 6 times the Gaussian σ parameter
plus one. It goes without saying that if the colvar r represents a distance between two freely-
moving molecules, it will cross this “threshold” rather frequently.

In this example, where the value of hillWidth (2σ ) amounts to 2 grid points, the threshold is
6+1 = 7 grid points away from upperBoundary. In explicit units, the width of r is wr = 0.2 Å, and
the threshold is 15.0 - 7×0.2 = 13.6 Å.

The wall_r restraint included in the example prevents this: the position of its upperWall is 13 Å,
i.e. 3 grid points below the buffer’s threshold (13.6 Å). For the chosen value of upperWallConstant,
the energy of the wall_r bias at r = rupper = 13.6 Å is:

E∗ =
1
2

k
(

r− rupper

wr

)2

=
1
2

2.0(−3)2 = 9 kcal/mol

which results in a relative probability exp(−E∗/κBT ) ' 3× 10−7 that r crosses the threshold. The
probability that r exceeds upperBoundary, which is further away, has also become vanishingly
small. At that point, you may want to set hardUpperBoundary to yes for r, and let meta_r know that
no special treatment near the grid’s boundaries will be needed.

What is the impact of the wall restraint onto the PMF? Not a very complicated one: the PMF
reconstructed by metadynamics will simply show a sharp increase in free-energy where the wall
potential kicks in (r > 13 Å). You may then choose between using the PMF only up until that point
and discard the rest, or subtracting the energy of the harmonicWalls restraint from the PMF itself.
Keep in mind, however, that the statistical convergence of metadynamics may be less accurate
where the wall potential is strong.

In summary, although it would be simpler to set the wall’s position upperWall and the grid’s
boundary upperBoundary to the same number, the finite width of the Gaussian hills calls for setting
the former strictly within the latter.
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7.6.2 Required metadynamics keywords

To enable a metadynamics-based calculation, a metadynamics {...} block must be included
in the Colvars configuration file.

By default, metadynamics bias energy and forces will be recorded onto a grid, the parameters
of which can be defined within the definition of each colvar, as described in 5.21. Alternately, grid
parameters can be set directly inside the metadynamics block by inserting a grid sub-block, as
explained in 7.1.

Other required keywords will be specified within the metadynamics block: these are colvars
(the names of the variables involved), hillWeight (the weight parameter W ), and the widths 2σ

of the Gaussian hills in each dimension that can be given either as the single dimensionless
parameter hillWidth, or explicitly for each colvar with gaussianSigmas.

• name — same definition as name (biasing and analysis methods)

• colvars — same definition as colvars (biasing and analysis methods)

• outputEnergy — same definition as outputEnergy (biasing and analysis methods)

• outputFreq — same definition as outputFreq (biasing and analysis methods)

• writeTIPMF — same definition as writeTIPMF (biasing and analysis methods)

• writeTISamples — same definition as writeTISamples (biasing and analysis methods)

• stepZeroData — same definition as stepZeroData (biasing and analysis methods)

• hillWeight — Height of each hill (energy unit)

[ positive decimal, context: metadynamics ]

This option sets the height W of the Gaussian hills that are added during this run. Lower
values provide more accurate sampling of the system’s degrees of freedom at the price of
longer simulation times to complete a PMF calculation based on metadynamics.

• hillWidth — Width 2σ of a Gaussian hill, measured in number of grid points

[ positive decimal, context: metadynamics ]

This keyword sets the Gaussian width 2σξi for all colvars, expressed in number of grid points,
with the grid spacing along each colvar ξ determined by the respective value of width. Val-
ues between 1 and 3 are recommended for this option: smaller numbers will fail to ade-
quately interpolate each Gaussian function [1], while larger values may be unable to account
for steep free-energy gradients. The values of each half-width σξi in the physical units of
ξi are also printed by VMD at initialization time; alternatively, they may be set explicitly via
gaussianSigmas.

• gaussianSigmas — Half-widths σ of the Gaussian hill (one for each colvar)

[ space-separated list of decimals, context: metadynamics ]
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This option sets the parameters σξi of the Gaussian hills along each colvar ξi, expressed in
the same unit of ξi. No restrictions are placed on each value, but a warning will be printed if
useGrids is on and the Gaussian width 2σξi is smaller than the corresponding grid spacing,
width(ξi). If not given, default values will be computed from the dimensionless number
hillWidth.

• newHillFrequency — Frequency of hill creation

Default: 1000 [ positive integer, context: metadynamics ]

This option sets the number of steps after which a new Gaussian hill is added to the meta-
dynamics potential. The product of this number and the integration time-step defines the
parameter δ t in eq. 35. Higher values provide more accurate statistical sampling, at the
price of longer simulation times to complete a PMF calculation. When analyzing data from a
previous simulation in VMD, the metadynamics potential does not need to be updated, and
it is useful to set this number to 0.

7.6.3 Output files

When interpolating grids are enabled (default behavior), the PMF is written by default every
colvarsRestartFrequency steps to the file outputName.pmf in multicolumn text format (4.7.5).
The following two options allow to disable or control this behavior and to track statistical conver-
gence:

• writeFreeEnergyFile — Periodically write the PMF for visualization

Default: on [ boolean, context: metadynamics ]

When useGrids and this option are on, the PMF is written every outputFreq steps.

• keepFreeEnergyFiles — Keep all the PMF files

Default: off [ boolean, context: metadynamics ]

When writeFreeEnergyFile and this option are on, the step number is included in the file
name, thus generating a series of PMF files. Activating this option can be useful to follow
more closely the convergence of the simulation, by comparing PMFs separated by short
times.

• writeHillsTrajectory — Write a log of new hills

Default: off [ boolean, context: metadynamics ]

If this option is on, a file containing the Gaussian hills written by the metadynamics bias, with
the name:
“outputName.colvars.<name>.hills.traj”,
which can be useful to post-process the time series of the Gassian hills. Each line is written
every newHillFrequency, regardless of the value of outputFreq. When multipleReplicas
is on, its name is changed to:
“outputName.colvars.<name>.<replicaID>.hills.traj”.
The columns of this file are the centers of the hills, ξi(t ′), followed by the half-widths, σξi ,
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and the weight, W . Note: prior to version 2020-02-24, the full-width 2σ of the Gaussian was
reported in lieu of σ .

7.6.4 Performance optimization

The following options control the computational cost of metadynamics calculations, but do not
affect results. Default values are chosen to minimize such cost with no loss of accuracy.

• useGrids — Interpolate the hills with grids

Default: on [ boolean, context: metadynamics ]

This option discretizes all hills for improved performance, accumulating their energy and
their gradients on two separate grids of equal spacing. Grids are defined by the values of
lowerBoundary, upperBoundary and width for each colvar. Currently, this option is imple-
mented for all types of variables except the non-scalar types (distanceDir or orientation).
If expandBoundaries is defined in one of the colvars, grids are automatically expanded along
the direction of that colvar.

• rebinGrids — Recompute the grids when reading a state file

Default: off [ boolean, context: metadynamics ]

When restarting from a state file, the grid’s parameters (boundaries and widths) saved in
the state file override those in the configuration file. Enabling this option forces the grids to
match those in the current configuration file.

• keepHills — Write each individual hill to the state file

Default: off [ boolean, context: metadynamics ]

When useGrids and this option are on, all hills are saved to the state file in their analytic
form, alongside their grids. This makes it possible to later use exact analytic Gaussians for
rebinGrids. To only keep track of the history of the added hills, writeHillsTrajectory is
preferable.

7.6.5 Ensemble-Biased Metadynamics

The ensemble-biased metadynamics (EBMetaD) approach [36] is designed to reproduce a
target probability distribution along selected collective variables. Standard metadynamics can be
seen as a special case of EBMetaD with a flat distribution as target. This is achieved by weighing
the Gaussian functions used in the metadynamics approach by the inverse of the target probability
distribution:

VEBmetaD (ξ (t)) =
t ′<t

∑
t ′=δ t,2δ t,...

W
exp
(
Sρ

)
ρexp(ξ (t ′))

Ncv

∏
i=1

exp

(
−(ξi(t)−ξi(t ′))2

2σ2
ξi

)
, (38)
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where ρexp(ξ ) is the target probability distribution and Sρ =−
∫

ρexp(ξ ) logρexp(ξ )dξ its correspond-
ing differential entropy. The method is designed so that during the simulation the resulting distri-
bution of the collective variable ξ converges to ρexp(ξ ). A practical application of EBMetaD is to
reproduce an “experimental” probability distribution, for example the distance distribution between
spectroscopic labels inferred from Förster resonance energy transfer (FRET) or double electron-
electron resonance (DEER) experiments [36].

The PMF along ξ can be estimated from the bias potential and the target ditribution [36]:

A(ξ ) ' −VEBmetaD(ξ )−κBT logρexp(ξ ) (39)

and obtained by enabling writeFreeEnergyFile. Similarly to eq. 37, a more accurate estimate of
the free energy can be obtained by averaging (after an equilibration time) multiple time-dependent
free energy estimates (see keepFreeEnergyFiles).

The following additional options define the configuration for the ensemble-biased metadynam-
ics approach:

• ebMeta — Perform ensemble-biased metadynamics

Default: off [ boolean, context: metadynamics ]

If enabled, this flag activates the ensemble-biased metadynamics as described by Marinelli
et al.[36]. The target distribution file, targetdistfile, is then required. The keywords
lowerBoundary, upperBoundary and width for the respective variables are also needed to
set the binning (grid) of the target distribution file.

• targetDistFile — Target probability distribution file for ensemble-biased metadynamics

[ multicolumn text file, context: metadynamics ]

This file provides the target probability distribution, ρexp(ξ ), reported in eq. 38. The latter
distribution must be a tabulated function provided in a multicolumn text format (see 4.7.5).
The provided distribution is then normalized.

• ebMetaEquilSteps — Number of equilibration steps for ensemble-biased metadynamics

[ positive integer, context: metadynamics ]

The EBMetaD approach may introduce large hills in regions with small values of the target
probability distribution (eq. 38). This happens, for example, if the probability distribution
sampled by a conventional molecular dynamics simulation is significantly different from the
target distribution. This may lead to instabilities at the beginning of the simulation related to
large biasing forces. In this case, it is useful to introduce an equilibration stage in which the
bias potential gradually switches from standard metadynamics (eq. 35) to EBmetaD (eq. 38)
as λVmeta(ξ )+(1−λ )VEBmetaD(ξ ), where λ =(ebMetaEquilSteps−step)/ebMetaEquilSteps
and step is the current simulation step number.

• targetDistMinVal — Minimum value of the target distribution in reference to its maximum
value

[ positive decimal, context: metadynamics ]

It is useful to set a minimum value of the target probability distribution to avoid values of
the latter that are nearly zero, leading to very large hills. This parameter sets the minimum
value of the target probability distribution that is expressed as a fraction of its maximum value:
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minimum value = maximum value X targetDistMinVal. This implies that 0 < targetDistMinVal
< 1 and its default value is set to 1/1000000. To avoid divisions by zero (see eq. 38), if
targetDistMinVal is set as zero, values of ρexp equal to zero are replaced by the smallest
positive value read in the same file.

As with standard metadynamics, multidimensional probability distributions can be targeted us-
ing a single metadynamics block using multiple colvars and a multidimensional target distribution
file (see 4.7.5). Instead, multiple probability distributions on different variables can be targeted sep-
arately in the same simulation by introducing multiple metadynamics blocks with the ebMeta option.

Example: EBmetaD configuration for a single variable.

colvar {
name r
distance {

group1 { atomNumbers 991 992 }
group2 { atomNumbers 1762 1763 }

}
upperBoundary 100.0
width 0.1

}

metadynamics {
name ebmeta
colvars r
hillWeight 0.01
hillWidth 3.0
ebMeta on
targetDistFile targetdist1.dat
ebMetaEquilSteps 500000

}

where targetdist1.dat is a text file in “multicolumn” format (4.7.5) with the same width as the
variable r (0.1 in this case):

# 1
# 0.0 0.1 1000 0

0.05 0.0012
0.15 0.0014

. . . . . .
99.95 0.0010

Tip: Besides setting a meaningful value for targetDistMinVal, the exploration of unphysi-
cally low values of the target distribution (which would lead to very large hills and possibly nu-
merical instabilities) can be also prevented by restricting sampling to a given interval, using e.g.
harmonicWalls restraint (7.10).
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7.6.6 Well-tempered metadynamics

The following options define the configuration for the “well-tempered” metadynamics approach
[37]:

• wellTempered — Perform well-tempered metadynamics

Default: off [ boolean, context: metadynamics ]

If enabled, this flag causes well-tempered metadynamics as described by Barducci et al.[37]
to be performed, rather than standard metadynamics. The parameter biasTemperature is
then required. This feature was contributed by Li Li (Luthey-Schulten group, Department of
Chemistry, UIUC).

• biasTemperature — Temperature bias for well-tempered metadynamics

[ positive decimal, context: metadynamics ]

When running metadynamics in the long time limit, collective variable space is sampled to
a modified temperature T +∆T . In conventional metadynamics, the temperature “boost” ∆T
would constantly increases with time. Instead, in well-tempered metadynamics ∆T must
be defined by the user via biasTemperature. The written PMF includes the scaling factor
(T +∆T )/∆T [37]. A careful choice of ∆T determines the sampling and convergence rate,
and is hence crucial to the success of a well-tempered metadynamics simulation.

Note: usage of well-tempered metadynamics in combination with multiple walkers (7.6.7) is
discouraged. Should you want to use the two features, keep in mind that in Colvars, the well-
tempered scaling factor is applied independently of the communication between replicas, i.e. each
walker has its Gaussian hills scaled independently of the other walkers.

7.6.7 Multiple-walker metadynamics

Metadynamics calculations can be performed concurrently by multiple replicas that share a com-
mon history. This variant of the method is called multiple-walker metadynamics [38]: the Gaussian
hills of all replicas are periodically combined into a single biasing potential, intended to converge
to a single PMF.

In the implementation here described [1], replicas communicate through files. This arrange-
ment allows launching the replicas either (1) as a bundle (i.e. a single job in a cluster’s queueing
system) or (2) as fully independent runs (i.e. as separate jobs for the queueing system). One
advantage of the use case (1) is that an identical Colvars configuration can be used for all replicas
(otherwise, replicaID needs to be manually set to a different string for each replica). However,
the use case (2) is less demanding in terms of high-performance computing resources: a typical
scenario would be a computer cluster (including virtual servers from a cloud provider) where not
all nodes are connected to each other at high speed, and thus each replica runs on a small group
of nodes or a single node.

Whichever way the replicas are started (coupled or not), a shared filesystem is needed so that
each replica can read the files created by the others: paths to these files are stored in the shared
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file replicasRegistry. This file, and those listed in it, are read every replicaUpdateFrequency
steps. Each time the Colvars state file is written (for example, colvarsRestartFrequency steps),
the file named:
outputName.colvars.name.replicaID.state
is written as well; this file contains only the state of the metadynamics bias, which the other repli-
cas will read in turn. In between the times when this file is modified/replaced, new hills are also
temporarily written to the file named:
outputName.colvars.name.replicaID.hills
Both files are only used for communication, and may be deleted after the replica begins writing
files with a new outputName.

Example: Multiple-walker metadynamics with file-based communication.

metadynamics {
name mymtd
colvars x
hillWeight 0.001
newHillFrequency 1000
hillWidth 3.0

multipleReplicas on
replicasRegistry /shared-folder/mymtd-replicas.txt
replicaUpdateFrequency 50000 # Best if larger than newHillFrequency

}

The following are the multiple-walkers related options:

• multipleReplicas — Enable multiple-walker metadynamics

Default: off [ boolean, context: metadynamics ]

This option turns on multiple-walker communication between replicas.

• replicasRegistry — Multiple replicas database file

[ UNIX filename, context: metadynamics ]

If multipleReplicas is on, this option sets the path to the replicas’ shared database file.
It is best to use an absolute path (especially when running individual replicas in separate
folders).

• replicaUpdateFrequency — How often hills are shared between replicas

[ positive integer, context: metadynamics ]

If multipleReplicas is on, this option sets the number of steps after which each replica tries
to read the other replicas’ files. On a networked file system, it is best to use a number of
steps that corresponds to at least a minute of wall time.

• replicaID — Set the identifier for this replica (required only for independent jobs)

Default: replica index (only if MPI is used) [ string, context: metadynamics ]
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If multipleReplicas is on, this option sets a unique identifier for this replicas. Specifying
this option is thus only required when the replicas are launched as independent computa-
tions: when the replicas share a common parallel communication framework (i.e. they are
all launched together as a single message-passing computation via MPI) the default value
of this keyword is the replica’s numeric index (zero-based).

• writePartialFreeEnergyFile — Periodically write the contribution to the PMF from this
replica

Default: off [ boolean, context: metadynamics ]

If multipleReplicas is on, enabling this option produces an additional file outputName.partial.pmf,
which can be useful to monitor the contribution of each replica to the total PMF (which is writ-
ten to the file outputName.pmf). Note: the name of this file is chosen for consistency and
convenience, but its content is not a PMF and it is not expected to converge, even if the total
PMF does.

7.7 On-the-fly probability enhanced sampling (OPES)

This biasing method implements the on-the-fly probability enhanced sampling (OPES) with
metadynamics-like target distribution.[39] The bias samples target distributions defined via their
marginal distribution ptg(ξ ) over some CVs, ξ = ξ (x). By default opes_metad targets the well-
tempered distribution, pWT(ξ ) = [P(ξ )]1/γ , where γ is known as the biasfactor. Similarly to
metadynamics, opes_metad optimizes the bias on-the-fly, with a given newHillfrequency. It does
so by reweighting via kernel density estimation of the unbiased distribution in the CV space, P(ξ ).
A compression algorithm is used to prevent the number of kernels from growing linearly with the
simulation time. The bias at step n is

Vn (ξ ) =−kBT (1−1/γ) ln
(

Pn(ξ )

Zn
+ ε

)
, (40)

where the probability Pn (ξ ) and the normalization factor Zn are computed as

Pn(ξ ) =
∑

n
k wkG(ξ ,ξ k)

∑
n
k wk

(41)

Zn =
1
|Ωn|

∫
Ωn

Pn (ξ )dξ , (42)

where the weights wk are given by wk = exp(βVk−1(ξ k)), and the Gaussian kernels G
(
ξ ,ξ ′

)
=

hexp
[
−1/2

(
ξ −ξ

′)T
Σ−1

(
ξ −ξ

′)] have a diagonal covariance matrix Σi j = σ2δi j and fixed height

h = Πi(σi
√

2π)−1 (see Ref.[39] for a complete description of the method).
If the exploration mode (keyword explore) is on, then the on-the-fly target probability distribu-

tion pWT(ξ ) is used to define the biasing energy:

Vn (ξ ) =−kBT (γ−1) ln
(

pWT
n (ξ )

Zn
+ ε

)
, (43)

(See Ref.[40] for a complete description of the exploration mode.)
The implementation of opes_metad and its documentation are largely based on the OPES

module of the PLUMED package.
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7.7.1 Implementation notes

Compared to the the OPES module in PLUMED [41], this implementation currently has the follow-
ing limitations:

• Colvars does not support chaining bias actions in PLUMED, so the Colvars OPES imple-
mentation cannot take the biasing energies of other biases, such as harmonic restraints,
into account for the internal reweighting, which means that there is no way to achieve the
same functionality as the EXTRA_BIAS option in the OPES module in PLUMED. This means
that it is not possible to sample a custom target distribution in the Colvars OPES implemen-
tation.

• Due to the same limitation of Colvars as described above, you cannot collect samples on-
the-fly by chaining opes_metad with a weighted histogram for PMF calculations. Although
the PMF calculation via reweighting is implemented into the pmf option, the functionality is
quite limited. The CVs in pmfColvars must be among the biased ones. In other words, you
cannot apply bias on (ξ1,ξ2) and compute the PMF along ξ3 by the on-the-fly reweighting
using pmf (you can only compute the PMF along ξ1, ξ2 or (ξ1,ξ2)). In addition, you can only
specify one set of CVs for estimating the PMF (you cannot apply the OPES bias on (ξ1,ξ2,ξ3)
and compute two 2D PMFs along (ξ1,ξ2) and (ξ2,ξ3) simultaneously using the pmf option).
However, you can always bypass this limitation by post-hoc reweighting with the trajectories.

• Colvars computes the biases in parallel with SMP, so it cannot use multiple threads again
for computing the probability and the normalization factor, searching the kernels that are
able to compress and updating the neighbor list. As a result, the CPU performance of this
implementation may be slower than the PLUMED OPES module.

The following table summarizes the differences of the option names in Colvars and the corre-
sponding option names in the PLUMED OPES module:

The PLUMED options for restarting (STATE_RFILE, STATE_WFILE and STATE_WSTRIDE) are not
necessary in Colvars, since Colvars has a unified mechanism to save the information required for
restarting in the .colvars.state file.

7.7.2 General options

To enable a OPES-based calculation, a opes_metad {...} block must be included in the Colvars
configuration file. The opes_metad block supports the following options:

• name — same definition as name (biasing and analysis methods)

• colvars — same definition as colvars (biasing and analysis methods)

• outputEnergy — same definition as outputEnergy (biasing and analysis methods)

• barrier — The highest free-energy barrier you wish to overcome (energy unit)

[ positive decimal, context: opes_metad ]
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Colvars keyword PLUMED keyword
barrier BARRIER
newHillFrequency PACE
gaussianSigma SIGMA
gaussianSigmaMin SIGMA_MIN
kernelCutoff KERNEL_CUTOFF
compressionThreshold COMPRESSION_THRESHOLD
adaptiveSigma (use SIGMA=ADAPTIVE)
adaptiveSigmaStride ADAPTIVE_SIGMA_STRIDE
neighborList NLIST
neighborListNewHillReset NLIST_PACE_RESET
neighborListParameters NLIST_PARAMETERS
noZed NO_ZED
fixedGaussianSigma FIXED_SIGMA
recursiveMerge (the opposite of RECURSIVE_MERGE_OFF)
calcWork CALC_WORK
multipleReplicas WALKERS_MPI

This parameter should be set to be at least equal to the highest free energy barrier you wish
to overcome. If it is much lower than that, you will not cross the barrier, if it is much higher,
convergence might take a little longer. If the system has a basin that is clearly more stable
than the others, it is better to start the simulation from there.

• newHillFrequency — Frequency of hill creation

[ positive integer, context: opes_metad ]

The frequency for kernel deposition.

• biasfactor — The γ biasfactor used for the well-tempered target distribution

Default: barrier/kBT [ positive decimal or “inf”, context: opes_metad ]

This option sets the γ in Eq.(40). If setting to “inf”, the target distribution is uniform. It cannot
be “inf” in the exploration mode.

• gaussianSigma — The initial widths of the kernels (divided by the square root of gamma in
exploration mode)

[ positive decimal, context: opes_metad ]

This option sets the initial σ values of the Gaussian kernels. The number of gaussianSigma
values should match the number of CVs used by colvars. If adaptiveSigma is set, then this
option can be ignored.

• gaussianSigmaMin — The minimum widths of the kernels (divided by the square root of
gamma in exploration mode)

[ positive decimal (optional), context: opes_metad ]

This option sets the minimum σ values of the Gaussian kernels. The number of gaussianSigmaMin
values should match the number of CVs used by colvars. The OPES method scales down
the σ during the simulation, and will never shrink σ under gaussianSigmaMin if this option is
set.
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• explore — Exploration mode

Default: off [ boolean, context: opes_metad ]

If enabled, the OPES exploration mode will be used (see Ref.[40] for more information about
the exploration mode).

• epsilon — The value of the regularization constant for the probability

Default: exp(−barrier/kBT/(1−1/γ)) [ positive decimal, context: opes_metad ]

This option sets the ε in Eq.(40).

• kernelCutoff — Truncate kernels at this distance, in units of σ

Default:
√

2∗barrier/kBT/(1−1/γ) [ positive decimal, context: opes_metad ]

If the value of (ξ − ξ
′)T Σ−1(ξ − ξ

′) is larger than the square of this value, then G(ξ ,ξ ′) is
evaluated as zero.

• compressionThreshold — Merge kernels if closer than this threshold, in units of σ

Default: 1.0 [ positive decimal, context: opes_metad ]

Kernels will be merged the distances of their centers (scaled by the square of σ ) are closer
than this threshold.

• adaptiveSigma — Adaptively compute the bandwidths

Default: off [ boolean, context: opes_metad ]

If enabled, the values of σ of CVs are computed adaptively based on their variances. See
the Supporting Information of Ref.[40] for more details.

• adaptiveSigmaStride — Number of steps for measuring adaptive sigma

Default: 10×newHillFrequency [ positive integer, context: opes_metad ]

This option sets the number of steps for measuring the rolling variances of CVs that are used
by the adaptive kernel bandwidth algorithm. See the Supporting Information of Ref.[40] for
more details.

• neighborList — Use neighbor list for kernels summation (experimental)

Default: off [ boolean, context: opes_metad ]

If enabled, a neighbor list will be used for kernels summation.

• neighborListNewHillReset — Force the reset of the neighbor list at each time when de-
positing a new hill

Default: off [ boolean, context: opes_metad ]

If enabled, the neighbor list will be rebuilt at each time when depositing a new hill.

• neighborListParameters — The two cutoff parameters of the neighbor list

Default: 3.0 0.5 [ positive decimals, context: opes_metad ]

The first parameter is the maximum distance of neighboring kernels. The second parameters
is the threshold for rebuilding.
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• noZed — Do not normalize the probability over the explored CV space

Default: off [ boolean, context: opes_metad ]

If enabled, Zn is always 1.

• fixedSigma — Do not scale down σ

Default: off [ boolean, context: opes_metad ]

If enabled, σ will not be decreased as the simulation proceeds.

• recursiveMerge — Merge the kernels recursively

Default: on [ boolean, context: opes_metad ]

If enabled, the kernels will be compressed recursively when a new kernel is added.

• calcWork — Calculate the work done by the bias

Default: off [ boolean, context: opes_metad ]

If enabled, the total accumulated work will be computed.

7.7.3 Multiple-walker options

The following options can be used for the multiple-walker OPES, and require the direct com-
munication between replicas through MPI:

• multipleReplicas — Enable multiple-walker OPES

Default: off [ boolean, context: opes_metad ]

This option turns on multiple-walker communication between replicas.

• replicaID — Set the identifier for this replica (required only for independent jobs)

Default: replica index) [ string, context: opes_metad ]

If multipleReplicas is on, this option sets a unique identifier for this replicas. Specifying
this option is thus only required when the replicas are launched as independent computa-
tions: when the replicas share a common parallel communication framework (i.e. they are
all launched together as a single message-passing computation via MPI) the default value
of this keyword is the replica’s numeric index (zero-based).

• sharedFreq — Frequency (in number of steps) at which force samples are synchronized
among the replicas

Default: outputFreq [ positive integer or zero, context: opes_metad ]

Every sharedFreq steps, the replicas communicate the samples that have been gathered
since the last synchronization time. Because this forces the replicas to synchronize, small
values of this parameter may slightly reduce the overall throughput, especially on systems
with unequal performance.
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7.7.4 Output options

The following options are used for setting the PMF and trajectory output. The PMF is calcu-
lated based on reweighting the CVs specified by pmfColvars, which collects on-the-fly the biasing
energy V (ξ ) and the values of CVs of every step, and builds a weighted histogram to calculate the
unbiased probability of ξ

〈P
(
ξ
′)〉= ∑

N
t=0 δ

(
ξ (x)−ξ

′)exp
(

V (ξ )
kBT

)
∑

N
t=0 exp

(
V (ξ )
kBT

) (44)

where N is the total number of simulation steps, ξ
′ is the grid center in the histogram, and δ is the

dirac delta function. The PMF is then obtained by

A(ξ ′) =−kBT ln〈P(ξ ′)〉+A0 (45)

where A0 is a constant to ensure A(ξ ′) on every grid of the histogram is not negative.
The grid used for discretizing the free energy surface (PMF) computated by OPES is defined

by the relevant options of the colvars. Alternately, grid parameters can be set directly inside the
opes_metad block by inserting a grid sub-block, as explained in 7.1.

• pmf — Output the PMF

Default: off [ boolean, context: opes_metad ]

This option turns on the PMF output based on reweighting.

• pmfColvars — The CVs used for estimating the PMF

[ positive decimal, context: opes_metad ]

This option sets the CVs used for the PMF. The CVs specified in this option must have
appeared in colvars and had the boundaries and widths.

• pmfHistoryFrequency — The frequency of saving the PMF history file

Default: 0 [ positive integer, context: opes_metad ]

If this option is larger than 0 and pmf is on, then every pmfHistoryFrequency steps the cur-
rent PMF will also be saved into “outputName.colvars.<name>.<replicaID>.hist.pmf”.

• pmfShared — Output a global PMF for multiple-walker OPES

Default: on [ boolean, context: opes_metad ]

If multipleReplicas is on and this option is also on, then a global reweighting histogram will
be built to collect samples from all replicas, and the corresponding global PMF is written into
“outputName.colvars.<name>.<replicaID>.global.pmf” by replica 0. The history global
PMF is also written to “outputName.colvars.<name>.<replicaID>.global.hist.pmf” by
replica 0.
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• printTrajectoryFrequency — The frequency of saving the trajectories

Default: colvarsTrajFrequency [ positive integer, context: opes_metad ]

If this option is larger than 0, then every printTrajectoryFrequency, the simulation time in
ps, the values of CVs, the biasing energy, c(t), Zn (if noZed is off), the effective sample size
(Neff in Ref.[39]), the work (if calcWork is on), the total number of compressed kernels, the
number of kernels in the neighbor list (if neighborList is on), and the number of steps from
the last neighbor list update (if neighborList is on) will be written to
“outputName.colvars.<name>.<replicaID>.misc.traj”.

Similar to the output file specified by the FILE option in the PLUMED implementation, the out-
put file “outputName.colvars.<name>.<replicaID>.kernels.dat” includes all deposited un-
compressed kernels (the step number of deposition, the kernel center, the Gaussian kernel σ ,
the height of the kernel, and the biasing energy in kBT ). The format of .kernels.dat files man-
ages to be compatible with the post-processing tools provided in the PLUMED OPES tutorial, so
that it is possible to run State_from_Kernels.py and then FES_from_State.py to get the PMF
along the biased CVs. Besides the pmf option, there are two ways to manually estimate the PMF,
namely (i) reweighting the trajectories using the biasing energy either in the .colvars.traj file
(with outputEnergy) or the .misc.traj file (the <name>.bias column), and (ii) summing up all
the kernels (see Ref.[39] for more information).

7.7.5 Example input

Example: OPES with adaptive kernel bandwidth, neighbor list and PMF based on reweighting.

colvarsTrajFrequency 500

colvar {
name phi
lowerBoundary -180
upperBoundary 180
width 5.0
dihedral {

group1 {atomNumbers { 5 }}
group2 {atomNumbers { 7 }}
group3 {atomNumbers { 9 }}
group4 {atomNumbers { 15}}

}
}

colvar {
name psi
lowerBoundary -180
upperBoundary 180
width 5.0
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dihedral {
group1 {atomNumbers { 7 }}
group2 {atomNumbers { 9 }}
group3 {atomNumbers { 15 }}
group4 {atomNumbers { 17 }}

}
}

opes_metad {
colvars phi psi
newHillFrequency 500
barrier 11.950286806883364
adaptiveSigma on
neighborList on
printTrajectoryFrequency 500
pmf on
pmfColvars phi psi
pmfHistoryFrequency 1000
outputEnergy on

}

7.8 Harmonic restraints

The harmonic biasing method may be used to enforce fixed or moving restraints, including
variants of Steered and Targeted MD. Within energy minimization runs, it allows for restrained
minimization, e.g. to calculate relaxed potential energy surfaces. In the context of the Colvars
module, harmonic potentials are meant according to their textbook definition:

V (ξ ) =
1
2

k
(

ξ −ξ0

wξ

)2

(46)

There are two noteworthy aspects of this expression:

1. Because the standard coefficient of 1/2 of the harmonic potential is included, this expres-
sion differs from harmonic bond and angle potentials historically used in common force fields,
where the factor was typically omitted resulting in a non-standard definition of the force con-
stant.

2. The variable ξ is not only centered at ξ0, but is also scaled by its characteristic length scale
wξ (keyword width). The resulting dimensionless variable z=(ξ−ξ0)/wξ is typically easier to
treat numerically: for example, when the forces typically experienced by ξ are much smaller
than k/wξ and k is chosen equal to κBT (thermal energy), the resulting probability distribution
of z is approximately a Gaussian with mean equal to 0 and standard deviation equal to 1.

This property can be used for setting the force constant in umbrella-sampling ensemble
runs: if the restraint centers are chosen in increments of wξ , the resulting distributions of ξ

are most often optimally overlapped. In regions where the underlying free-energy landscape
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induces highly skewed distributions of ξ , additional windows may be added as needed, with
spacings finer than wξ .

Beyond one dimension, the use of a scaled harmonic potential also allows a standard definition
of a multi-dimensional restraint with a unified force constant:

V (ξ1, . . . ,ξM) =
1
2

k
M

∑
i=1

(
ξi−ξ0

wξ

)2

(47)

If one-dimensional or homogeneous multi-dimensional restraints are defined, and there are no
other uses for the parameter wξ , width can be left at its default value of 1.

A harmonic restraint is defined by a harmonic {...} block, which may contain the following
keywords:

• name — same definition as name (biasing and analysis methods)

• colvars — same definition as colvars (biasing and analysis methods)

• outputEnergy — same definition as outputEnergy (biasing and analysis methods)

• writeTIPMF — same definition as writeTIPMF (biasing and analysis methods)

• writeTISamples — same definition as writeTISamples (biasing and analysis methods)

• stepZeroData — same definition as stepZeroData (biasing and analysis methods)

• forceConstant — Scaled force constant (energy unit)

Default: 1.0 [ positive decimal, context: harmonic ]

This option defines a scaled force constant k for the harmonic potential (eq. 47). To ensure
consistency for multidimensional restraints, it is divided internally by the square of the specific
width of each variable (which is 1 by default). This makes all values effectively dimensionless
and of commensurate size. For instance, if this force constant is set to the thermal energy
κBT (equal to RT if molar units are used), then the amplitude of the thermal fluctuations
of each variable ξ will be on the order of its width, wξ . This can be used to estimate the
optimal spacing of umbrella-sampling windows (under the assumption that the force constant
is larger than the curvature of the underlying free energy). The values of the actual force
constants k/w2

ξ
are always printed when the restraint is defined.

• centers — Initial harmonic restraint centers

[ space-separated list of colvar values, context: harmonic ]

The centers (equilibrium values) of the restraint, ξ0, are entered here. The number of values
must be the number of requested colvars. Each value is a decimal number if the correspond-
ing colvar returns a scalar, a “(x, y, z)” triplet if it returns a unit vector or a vector, and a
“(q0, q1, q2, q3)” quadruplet if it returns a rotational quaternion. If a colvar has periodic-
ities or symmetries, its closest image to the restraint center is considered when calculating
the harmonic potential.

Tip: A complex set of restraints can be applied to a system, by defining several colvars, and
applying one or more harmonic restraints to different groups of colvars. In some cases, dozens of
colvars can be defined, but their value may not be relevant: to limit the size of the colvars trajectory
file, it may be wise to disable outputValue for such “ancillary” variables, and leave it enabled only
for “relevant” ones.
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7.8.1 Moving restraints: steered molecular dynamics

The following options allow to change gradually the centers of the harmonic restraints during
a simulations. When the centers are changed continuously, a steered MD in a collective variable
space is carried out.

• targetCenters — Steer the restraint centers towards these targets

[ space-separated list of colvar values, context: harmonic ]

When defined, the current centers will be moved towards these values during the simula-
tion. By default, the centers are moved over a total of targetNumSteps steps by a linear
interpolation, in the spirit of Steered MD. If targetNumStages is set to a nonzero value, the
change is performed in discrete stages, lasting targetNumSteps steps each. This second
mode may be used to sample successive windows in the context of an Umbrella Sampling
simulation. When continuing a simulation run, the centers specified in the configuration
file <colvarsConfig> are overridden by those saved in the restart file <colvarsInput>.
To perform Steered MD in an arbitrary space of colvars, it is sufficient to use this option
and enable outputAccumulatedWork and/or outputAppliedForce within each of the colvars
involved.

• targetNumSteps — Number of steps for steering

[ positive integer, context: harmonic ]

In single-stage (continuous) transformations, defines the number of MD steps required to
move the restraint centers (or force constant) towards the values specified with targetCenters
or targetForceConstant. After the target values have been reached, the centers (resp. force
constant) are kept fixed. In multi-stage transformations, this sets the number of MD steps
per stage.

• outputCenters — Write the current centers to the trajectory file

Default: off [ boolean, context: harmonic ]

If this option is chosen and colvarsTrajFrequency is not zero, the positions of the restraint
centers will be written to the trajectory file during the simulation. This option allows to con-
veniently extract the PMF from the Colvars trajectory files in a steered MD calculation.

Note on restarting moving restraint simulations: Information about the current step and
stage of a simulation with moving restraints is stored in the restart file (state file). Thus, such sim-
ulations can be run in several chunks, and restarted directly using the same colvars configuration
file. In case of a restart, the values of parameters such as targetCenters, targetNumSteps, etc.
should not be changed manually.

7.8.2 Moving restraints: umbrella sampling
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The centers of the harmonic restraints can also be changed in discrete stages: in this cases a
one-dimensional umbrella sampling simulation is performed. The sampling windows in simulation
are calculated in sequence. The colvars trajectory file may then be used both to evaluate the
correlation times between consecutive windows, and to calculate the frequency distribution of the
colvar of interest in each window. Furthermore, frequency distributions on a predefined grid can
be automatically obtained by using the histogram bias (see 7.13).

To activate an umbrella sampling simulation, the same keywords as in the previous section can
be used, with the addition of the following:

• targetNumStages — Number of stages for steering

Default: 0 [ non-negative integer, context: harmonic ]

If non-zero, sets the number of stages in which the restraint centers or force constant
are changed to their target values. If zero, the change is continuous. Each stage lasts
targetNumSteps MD steps. To sample both ends of the transformation, the simulation should
be run for targetNumSteps × (targetNumStages + 1).

7.8.3 Changing force constant

The force constant of the harmonic restraint may also be changed over time, either to introduce
or remove a restraint smoothly, or to estimate a restraint free energy[42].

• targetForceConstant — Change the force constant towards this value

[ positive decimal, context: harmonic ]

When defined, the current forceConstant will be moved towards this value during the simu-
lation. Time evolution of the force constant is dictated by the lambdaExponent parameter (see
below). By default, the force constant is changed smoothly over a total of targetNumSteps
steps. This is useful to introduce or remove restraints in a progressive manner. If targetNumStages
is set to a nonzero value, the change is performed in discrete stages, lasting targetNumSteps
steps each. This second mode may be used to compute the conformational free energy
change associated with the restraint, within the FEP or TI formalisms. For convenience, the
code provides an estimate of the free energy derivative for use in TI, with the format:
colvars: Lambda= ***.** dA/dLambda= ***.**
A more complete free energy calculation (particularly with regard to convergence analysis),
while not handled by the Colvars module, can be performed by post-processing the colvars
trajectory, if colvarsTrajFrequency is set to a suitably small value. It should be noted, how-
ever, that restraint free energy calculations may be handled more efficiently by an indirect
route, through the determination of a free energy profile for the restrained coordinate.[42]

• lambdaExponent — Exponent in the time-dependence of the force constant

Default: 1.0 [ decimal equal to or greater than 1.0, context: harmonic ]

Sets the exponent, α, in the function used to vary the force constant as a function of time.
The force is varied according to a coupling parameter λ , raised to the power α: kλ = k0 +
λ α(k1−k0), where k0, kλ , and k1 are the initial, current, and final values of the force constant.
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The parameter λ evolves linearly from 0 to 1, either smoothly, or in targetNumStages equally
spaced discrete stages, or according to an arbitrary schedule set with lambdaSchedule.
When the initial value of the force constant is zero, an exponent greater than 1.0 distributes
the effects of introducing the restraint more smoothly over time than a linear dependence,
and ensures that there is no singularity in the derivative of the restraint free energy with re-
spect to lambda. A value of 4 has been found to give good results in some tests. To remove
the restraint over time rather than introduce it, use the decoupling option.

• decoupling — Perform a restraint decoupling transformation

Default: off [ boolean, context: harmonic ]

When this option is enabled, the restraint is decoupled by changing the force constant from
forceConstant to 0.0 over the course of the simulation, as specified by targetNumSteps and,
optionally, targetNumStages. The force constant is then varied as: kλ = (1−λ )αk, where α

is the value of lambdaExponent. Setting lambdaExponent to a value greater than 1 (e.g. 4)
ensures a smoother dependence of the energy on λ around kλ = 0.

• targetEquilSteps — Number of steps discarded from TI estimate

Default: 0 [ positive integer, context: harmonic ]

Defines the number of steps within each stage that are considered equilibration and dis-
carded from the restraint free energy derivative estimate reported reported in the output.

• lambdaSchedule — Schedule of lambda-points for changing force constant

[ list of real numbers between 0 and 1, context: harmonic ]

If specified together with targetForceConstant, sets the sequence of discrete λ values that
will be used for different stages.

7.9 Computing the work of a changing restraint

If the restraint centers or force constant are changed continuosly (targetNumStages undefined)
it is possible to record the net work performed by the changing restraint:

• outputAccumulatedWork — Write the accumulated work of the changing restraint to the
Colvars trajectory file

Default: off [ boolean, context: harmonic ]

If targetCenters or targetForceConstant are defined and this option is enabled, the ac-
cumulated work from the beginning of the simulation will be written to the trajectory file
(colvarsTrajFrequency must be non-zero). When the simulation is continued from a state
file, the previously accumulated work is included in the integral. This option allows to con-
veniently extract the estimated PMF of a steered MD calculation (when targetCenters is
used), or of other simulation protocols.
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7.10 Harmonic wall restraints

The harmonicWalls {...} bias is closely related to the harmonic bias (see 7.8), with the fol-
lowing two differences: (i) instead of a center a lower wall and/or an upper wall are defined, outside
of which the bias implements a half-harmonic potential;

V (ξ ) =


1
2 k
(

ξ−ξupper
wξ

)2
if ξ > ξupper

0 if ξlower ≤ ξ ≤ ξupper

1
2 k
(

ξ−ξlower
wξ

)2
if ξ < ξlower

(48)

where ξlower and ξupper are the lower and upper wall thresholds, respectively; (ii) because an inter-
val between two walls is defined, only scalar variables can be used (but any number of variables
can be defined, and the wall bias is intrinsically multi-dimensional).

Note: this bias replaces the keywords lowerWall, lowerWallConstant, upperWall and upperWallConstant
defined in the colvar context. Those keywords are deprecated.

The harmonicWalls bias implements the following options:

• name — same definition as name (biasing and analysis methods)

• colvars — same definition as colvars (biasing and analysis methods)

• outputEnergy — same definition as outputEnergy (biasing and analysis methods)

• writeTIPMF — same definition as writeTIPMF (biasing and analysis methods)

• writeTISamples — same definition as writeTISamples (biasing and analysis methods)

• stepZeroData — same definition as stepZeroData (biasing and analysis methods)

• lowerWalls — Position of the lower wall(s)

[ Space-separated list of decimals, context: colvar ]

Defines the values ξlower below which a confining restraint on the colvar is applied to each
colvar ξ .

• upperWalls — Position of the upper wall(s)

[ Space-separated list of decimals, context: colvar ]

Defines the values ξupper above which a confining restraint on the colvar is applied to each
colvar ξ .

• forceConstant — same definition as forceConstant (Harmonic restraints)

• lowerWallConstant — Force constant for the lower wall

Default: forceConstant [ positive decimal, context: harmonicWalls ]

When both sets of walls are defined (lower and upper), this keyword allows setting different
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force constants for them. As with forceConstant, the specified constant is divided internally
by the square of the specific width of each variable (see also the equivalent keyword for the
harmonic restraint, forceConstant). The force constant reported in the output as “k”, and
used in the change of force constant scheme, is the geometric mean of upperWallConstant
and upperWallConstant.

• upperWallConstant — analogous to lowerWallConstant

• targetForceConstant — same definition as targetForceConstant (harmonic restraints)

• targetForceConstant — Change the force constant(s) towards this value

[ positive decimal, context: harmonicWalls ]

This keyword allows changing either one or both of the wall force constants over time. In the
case that lowerWallConstant and upperWallConstant have the same value, the behavior of
this keyword is identical to the corresponding keyword in the harmonic restraint; otherwise,
the change schedule is applied to the geometric mean of the two constant. When only
one set of walls is defined (lowerWall or upperWalls), only the respective force constant is
changed. Note: if only one of the two force constants is meant to change over time, it is
possible to use two instances of harmonicWalls, and apply the changing schedule only to
one of them.

• targetNumSteps — same definition as targetNumSteps (harmonic restraints)

• lambdaExponent — same definition as lambdaExponent (harmonic restraints)

• targetEquilSteps — same definition as targetEquilSteps (harmonic restraints)

• targetNumStages — same definition as targetNumStages (harmonic restraints)

• lambdaSchedule — same definition as lambdaSchedule (harmonic restraints)

• outputAccumulatedWork — same definition as outputAccumulatedWork (harmonic restraints)

• bypassExtendedLagrangian — Apply bias to actual colvars, bypassing extended coordi-
nates

Default: on [ boolean, context: harmonicWalls ]

This option behaves as bypassExtendedLagrangian for other biases, but it defaults to on,
unlike in the general case. Thus, by default, the harmonicWalls bias applies to the actual
colvars, so that the distribution of the colvar between the walls is unaffected by the bias,
which then applies a flat-bottom potential as a function of the colvar value. This bias will
affect the extended coordinate distribution near the walls. If bypassExtendedLagrangian is
disabled, harmonicWalls applies a flat-bottom potential as a function of the extended coor-
dinate. Conversely, this bias will then modify the distribution of the actual colvar value near
the walls.

Example 1: harmonic walls for one variable with two different force constants.
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harmonicWalls {
name mywalls
colvars dist
lowerWalls 22.0
upperWalls 38.0
lowerWallConstant 2.0
upperWallConstant 10.0

}

Example 2: harmonic walls for two variables with a single force constant.

harmonicWalls {
name mywalls
colvars phi psi
lowerWalls -180.0 0.0
upperWalls 0.0 180.0
forceConstant 5.0

}

7.11 Linear restraints

The linear keyword defines a linear potential:

V (ξ ) = k
(

ξ −ξ0

wξ

)
(49)

whose force is simply given by the constant k/wξ itself:

f (ξ ) = k/wξ (50)

This type of bias is therefore most useful in situations where a constant force is desired. As all
other restraints, it can be defined on one or more CVs, with each contribution added to the total
potential and the parameters wξ determining the relative magnitude for each.
Example: A possible use case of the linear bias is mimicking a constant electric field acting
on a specific particle, or the center of mass of many particles. In the following example, a linear
restraint is applied on a distanceZ variable (5.3.2), generating a constant force parallel to the Z
axis of magnitude 5 energy unit /length unit :

colvar {
name z
distanceZ {

...
}

}

linear {
colvars z
forceConstant 5.0
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centers 0.0
}

Another useful application of a linear restraint is to enforce experimental constraints in a sim-
ulation, with a lower non-equilibrium work than e.g. harmonic restraints [43]. There is generally a
unique strength of bias for each CV center, which means you must know the bias force constant
specifically for the center of the CV. This force constant may be found by using experiment directed
simulation described in section 7.12.

• name — same definition as name (biasing and analysis methods)

• colvars — same definition as colvars (biasing and analysis methods)

• outputEnergy — same definition as outputEnergy (biasing and analysis methods)

• forceConstant — Scaled force constant (energy unit)

Default: 1.0 [ Decimal, context: linear ]

This option defines a scaled force constant k for the linear bias. To ensure consistency
for multidimensional restraints, it is divided internally by the specific width of each variable
(which is 1 by default), so that all variables are effectively dimensionless and of commensu-
rate size. The values of k/wξ are always printed when the restraint is defined.

• centers — Initial linear restraint centers

[ space-separated list of colvar values, context: linear ]

These are analogous to the centers keyword of the harmonic restraint. Although they do
not affect dynamics, they are here necessary to ensure a well-defined energy for the linear
bias.

• writeTIPMF — same definition as writeTIPMF (biasing and analysis methods)

• writeTISamples — same definition as writeTISamples (biasing and analysis methods)

• targetForceConstant — same definition as targetForceConstant (Harmonic restraints)

• targetNumSteps — same definition as targetNumSteps (Harmonic restraints)

• lambdaExponent — same definition as lambdaExponent (Harmonic restraints)

• targetEquilSteps — same definition as targetEquilSteps (Harmonic restraints)

• targetNumStages — same definition as targetNumStages (Harmonic restraints)

• lambdaSchedule — same definition as lambdaSchedule (Harmonic restraints)

• outputAccumulatedWork — same definition as outputAccumulatedWork (Harmonic restraints)
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7.12 Adaptive Linear Bias/Experiment Directed Simulation

Experiment directed simulation applies a linear bias with a changing force constant. Please
cite White and Voth [44] when using this feature. As opposed to that reference, the force constant
here is scaled by the width corresponding to the biased colvar. In White and Voth, each force
constant is scaled by the colvars set center. The bias converges to a linear bias, after which it
will be the minimal possible bias. You may also stop the simulation, take the median of the force
constants (ForceConst) found in the colvars trajectory file, and then apply a linear bias with that
constant. All the notes about units described in sections 7.11 and 7.8 apply here as well. This
is not a valid simulation of any particular statistical ensemble and is only an optimization
algorithm until the bias has converged.

• name — same definition as name (biasing and analysis methods)

• colvars — same definition as colvars (biasing and analysis methods)

• centers — Collective variable centers

[ space-separated list of colvar values, context: alb ]

The desired center (equilibrium values) which will be sought during the adaptive linear bi-
asing. The number of values must be the number of requested colvars. Each value is a
decimal number if the corresponding colvar returns a scalar, a “(x, y, z)” triplet if it returns
a unit vector or a vector, and a “q0, q1, q2, q3)” quadruplet if it returns a rotational quater-
nion. If a colvar has periodicities or symmetries, its closest image to the restraint center is
considered when calculating the linear potential.

• updateFrequency — The duration of updates

[ An integer, context: alb ]

This is, N, the number of simulation steps to use for each update to the bias. This determines
how long the system requires to equilibrate after a change in force constant (N/2), how long
statistics are collected for an iteration (N/2), and how quickly energy is added to the system
(at most, A/2N, where A is the forceRange). Until the force constant has converged, the
method as described is an optimization procedure and not an integration of a particular
statistical ensemble. It is important that each step should be uncorrelated from the last so
that iterations are independent. Therefore, N should be at least twice the autocorrelation
time of the collective variable. The system should also be able to dissipate energy as fast as
N/2, which can be done by adjusting thermostat parameters. Practically, N has been tested
successfully at significantly shorter than the autocorrelation time of the collective variables
being biased and still converge correctly.

• forceRange — The expected range of the force constant in units of energy

Default: 3 kbT [ A space-separated list of decimal numbers, context: alb ]

This is largest magnitude of the force constant which one expects. If this parameter is too
low, the simulation will not converge. If it is too high the simulation will waste time exploring
values that are too large. A value of 3 kbT has worked well in the systems presented as a first
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choice. This parameter is dynamically adjusted over the course of a simulation. The benefit
is that a bad guess for the forceRange can be corrected. However, this can lead to large
amounts of energy being added over time to the system. To prevent this dynamic update,
add hardForceRange yes as a parameter

• rateMax — The maximum rate of change of force constant

[ A list of space-separated real numbers, context: alb ]

This optional parameter controls how much energy is added to the system from this bias.
Tuning this separately from the updateFrequency and forceRange can allow for large bias
changes but with a low rateMax prevents large energy changes that can lead to instability in
the simulation.

7.13 Multidimensional histograms

The histogram feature is used to record the distribution of a set of collective variables in the
form of a N-dimensional histogram. Defining such a histogram is generally useful for analysis
purposes, but it has no effect on the simulation.
Example: the two-dimensional histogram of a distance and an angle can be generated using the
configuration below. The histogram code requires that each variable is a scalar number that is
confined within a pre-defined interval. The interval’s boundaries may be specified by hand (e.g.
through lowerBoundary and upperBoundary in the variable definition), or auto-detected based on
the type of function. In this example, the lower boundary for the distance variable “r” is automat-
ically set to zero, and interval for the three-body angle “theta” is 0◦ and 180◦: however, that an
upper boundary for the distance “r” still needs to be specified manually. The grid spacings for the
two variables are 0.2 length unitand 3.0◦, respectively.

colvar {
name r
width 0.2
upperBoundary 20.0
distance { ... }

}

colvar {
name theta
width 3.0
dihedral { ... }

}

histogram {
name hist2d
colvars r theta

}
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The standard keywords below are used to control the histogram’s computation and to select
the variables that are sampled. See also 7.1 for keywords used to define the grid, 7.13.1 for output
parameters and 7.13.2 for more advanced keywords.

• name — same definition as name (biasing and analysis methods)

• colvars — same definition as colvars (biasing and analysis methods)

• stepZeroData — same definition as stepZeroData (biasing and analysis methods)

Grid parameters for the histogram may be provided at the level of the individual variables, or
via a dedicated configuration block grid { ...} inside the configuration of this histogram. The
options supported inside this block are described in 7.1.

Note that when gatherVectorColvars is on, each vector variable is automatically treated as a
scalar, and a single value of each grid parameter should be provided for it.

7.13.1 Output options for multi-dimensional histograms

The accumulated histogram is written in the Colvars state file, allowing for its accumulation
across continued runs. Additionally, the following files are written depending on the histogram’s
dimensionality:

• outputFreq — same definition as outputFreq (biasing and analysis methods)

• outputFile — Write the histogram to a file

Default: outputName.<name>.dat [ UNIX filename, context: histogram ]

Name of the file containing histogram data (multicolumn format, see 4.7.5), which is written
every outputFreq steps. If outputFile is set to none, the file is not written.

• outputFileDX — Write the histogram to a file

Default: outputName.<name>.dx [ UNIX filename, context: histogram ]

Name of the file containing histogram data (OpenDX format), which is written every outputFreq
steps. For the special case of 3 variables, VMD may be used to visualize this file. This file
is written by default if the dimension is 3 or more (you cannot visualize it easily for dimen-
sions 4 and above, but the DX format is still more compact than the multicolumn format). If
outputFileDX is set to none, the file is not written.

7.13.2 Histogramming vector variables

• gatherVectorColvars — Treat vector variables as multiple observations of a scalar vari-
able?

Default: off [ UNIX filename, context: histogram ]

When this is set to on, the components of a multi-dimensional colvar (e.g. one based on
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cartesian, distancePairs, or a vector of scalar numbers given by scriptedFunction) are
treated as multiple observations of a scalar variable. This results in the histogram being
accumulated multiple times for each simulation step or iteration of cv update). When mul-
tiple vector variables are included in histogram, these must have the same length because
their components are accumulated together. For example, if ξ , λ and τ are three variables
of dimensions 5, 5 and 1, respectively, for each iteration 5 triplets (ξi,λi,τ) (i = 1, . . .5) are
accumulated into a 3-dimensional histogram.

• weights — Relative contributions of each vector component to the histogram

Default: all weights equal to 1 [ list of space-separated decimals, context: histogram ]

When gatherVectorColvars is on, the components of each multi-dimensional colvar are
accumulated with a different weight. For example, if x and y are two distinct cartesian
variables defined on the same group of atoms, the corresponding 2D histogram can be
weighted on a per-atom basis: to compute an electron density map, it is possible to use
weights [$sel get atomicnumber] in the definition of histogram.

As with any other biasing and analysis method, when a histogram is applied to an extended-
system colvar (5.23), it accesses the value of the extended coordinate rather than that of the
actual colvar. This can be overridden by enabling the bypassExtendedLagrangian option. A joint
histogram of the actual colvar and the extended coordinate may be collected by specifying the
colvar name twice in a row in the colvars parameter (e.g. colvars myColvar myColvar): the first
instance will be understood as the actual colvar, and the second, as the extended coordinate.

• bypassExtendedLagrangian — same definition as bypassExtendedLagrangian (biasing and
analysis methods)

7.14 Probability distribution-restraints

The histogramRestraint bias implements a continuous potential of many variables (or of a
single high-dimensional variable) aimed at reproducing a one-dimensional statistical distribution
that is provided by the user. The M variables (ξ1, . . . ,ξM) are interpreted as multiple observations
of a random variable ξ with unknown probability distribution. The potential is minimized when the
histogram h(ξ ), estimated as a sum of Gaussian functions centered at (ξ1, . . . ,ξM), is equal to the
reference histogram h0(ξ ):

V (ξ1, . . . ,ξM) =
1
2

k
∫

(h(ξ )−h0(ξ ))
2 dξ (51)

h(ξ ) =
1

M
√

2πσ2

M

∑
i=1

exp
(
−(ξ −ξi)

2

2σ2

)
(52)

When used in combination with a distancePairs multi-dimensional variable, this bias implements
the refinement algorithm against ESR/DEER experiments published by Shen et al [45].

This bias behaves similarly to the histogram bias with the gatherVectorColvars option, with
the important difference that all variables are gathered, resulting in a one-dimensional histogram.
Future versions will include support for multi-dimensional histograms.

The list of options is as follows:
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• name — same definition as name (biasing and analysis methods)

• colvars — same definition as colvars (biasing and analysis methods)

• outputEnergy — same definition as outputEnergy (biasing and analysis methods)

• lowerBoundary — Lower boundary of the colvar grid

[ decimal, context: histogramRestraint ]

Defines the lowest end of the interval where the reference distribution h0(ξ ) is defined. Ex-
actly one value must be provided, because only one-dimensional histograms are supported
by the current version.

• upperBoundary — analogous to lowerBoundary

• width — Width of the colvar grid

[ positive decimal, context: histogramRestraint ]

Defines the spacing of the grid where the reference distribution h0(ξ ) is defined.

• gaussianSigma — Standard deviation of the approximating Gaussian

Default: 2 × width [ positive decimal, context: histogramRestraint ]

Defines the parameter σ in eq. 52.

• forceConstant — Force constant (energy unit)

Default: 1.0 [ positive decimal, context: histogramRestraint ]

Defines the parameter k in eq. 51.

• refHistogram — Reference histogram h0(ξ )

[ space-separated list of M positive decimals, context: histogramRestraint ]

Provides the values of h0(ξ ) consecutively. The mid-point convention is used, i.e. the first
point that should be included is for ξ = lowerBoundary+width/2. If the integral of h0(ξ ) is not
normalized to 1, h0(ξ ) is rescaled automatically before use.

• refHistogramFile — Reference histogram h0(ξ )

[ UNIX file name, context: histogramRestraint ]

Provides the values of h0(ξ ) as contents of the corresponding file (mutually exclusive with
refHistogram). The format is that of a text file, with each line containing the space-separated
values of ξ and h0(ξ ). The same numerical conventions as refHistogram are used.

• writeHistogram — Periodically write the instantaneous histogram h(ξ )

Default: off [ boolean, context: metadynamics ]

If on, the histogram h(ξ ) is written every colvarsRestartFrequency steps to a file with the
name outputName.<name>.hist.datThis is useful to diagnose the convergence of h(ξ )
against h0(ξ ).

135



7.15 Defining scripted biases

Rather than using the biasing methods described above, it is possible to apply biases provided
at run time as a Tcl script. This option, also available in NAMD, can be useful to test a new
algorithm to be used in a MD simulation.

• scriptedColvarForces — Enable custom, scripted forces on colvars

Default: off [ boolean, context: global ]

If this flag is enabled, a Tcl procedure named calc_colvar_forces accepting one parameter
should be defined by the user. It is executed at each timestep, with the current step number
as parameter, between the calculation of colvars and the application of bias forces. This
procedure may use the cv command to access the values of colvars (e.g. cv colvar xi
value), apply forces on them (cv colvar xi addforce $F) or add energy to the simulation
system (cv addenergy $E), effectively defining custom collective variable biases.

7.16 Performance of scripted biases

If concurrent computation over multiple threads is available (this is indicated by the message
“SMP parallelism is available.” printed at initialization time), it is useful to take advantage of the
scripting interface to combine many components, all computed in parallel, into a single variable.

The default SMP schedule is the following:

1. distribute the computation of all components across available threads;

2. on a single thread, collect the results of multi-component variables using polynomial combi-
nations (see 5.18), or custom functions (see 5.19), or scripted functions (see 5.20);

3. distribute the computation of all biases across available threads;

4. compute on a single thread any scripted biases implemented via the keyword scriptedColvarForces.

5. communicate on a single thread forces to VMD.

The following options allow to fine-tune this schedule:

• scriptingAfterBiases — Scripted colvar forces need updated biases?

Default: on [ boolean, context: global ]

This flag specifies that the calc_colvar_forces procedure (last step in the list above) is
executed only after all biases have been updated (next-to-last step) For example, this allows
using the energy of a restraint bias, or the force applied on a colvar, to calculate additional
scripted forces, such as boundary constraints. When this flag is set to off, it is assumed
that only the values of the variables (but not the energy of the biases or applied forces) will
be used by calc_colvar_forces: this can be used to schedule the calculation of scripted
forces and biases concurrently to increase performance.

136



8 Tcl command-line interface: list of commands

This section lists all the commands used in VMD to control the behavior of the Colvars module
from within a run script.

8.1 Commands to manage the Colvars module

cv addenergy <E>
Add an energy to the MD engine (no effect in VMD)
Parameters
E : float - Amount of energy to add

cv config <conf>
Read configuration from the given string
Parameters
conf : string - Configuration string

cv configfile <conf_file>
Read configuration from a file
Parameters
conf_file : string - Path to configuration file

cv delete
Delete this Colvars module instance (VMD only)

cv featurereport
Return a summary of Colvars features used so far and their citations
Returns
report : string - Feature report and citations

cv frame [frame]
Get or set current frame number (VMD only)
Parameters
frame : integer - Frame number (optional)
Returns
frame : integer - Frame number
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cv getatomappliedforces
Get the list of forces applied by Colvars to atoms
Returns
forces : array of arrays of floats - Atomic forces

cv getatomappliedforcesmax
Get the maximum norm of forces applied by Colvars to atoms
Returns
force : float - Maximum atomic force

cv getatomappliedforcesmaxid
Get the atom ID with the largest applied force
Returns
id : int - ID of the atom with the maximum atomic force

cv getatomappliedforcesrms
Get the root-mean-square norm of forces applied by Colvars to atoms
Returns
force : float - RMS atomic force

cv resetatomappliedforces
Reset forces applied by Colvars to atoms

cv getatomids
Get the list of indices of atoms used in Colvars
Returns
indices : array of ints - Atom indices

cv getatomcharges
Get the list of charges of atoms used in Colvars
Returns
charges : array of floats - Atomic charges

cv getatommasses
Get the list of masses of atoms used in Colvars
Returns
masses : array of floats - Atomic masses
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cv getatompositions
Get the list of cached positions of atoms used in Colvars
Returns
positions : array of arrays of floats - Atomic positions

cv getatomtotalforces
Get the list of cached total forces of atoms used in Colvars
Returns
forces : array of arrays of floats - Atomic total foces

cv getconfig
Get the module’s configuration string read so far
Returns
conf : string - Current configuration string

cv getenergy
Get the current Colvars energy
Returns
E : float - Amount of energy (internal units)

cv getnumactiveatomgroups
Get the number of atom groups that currently have positive ref counts
Returns
count : integer - Total number of atom groups

cv getnumactiveatoms
Get the number of atoms that currently have positive ref counts
Returns
count : integer - Total number of atoms

cv getnumatoms
Get the number of requested atoms, including those not in use now
Returns
count : integer - Total number of atoms

cv getstepabsolute
Get the current step number of the simulation (including restarts)
Returns
step : int - Absolute step number
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cv getsteprelative
Get the current step number from the start of this job
Returns
step : int - Relative step number

cv help [command]
Get the help string of the Colvars scripting interface
Parameters
command : string - Get the help string of this specific command (optional)
Returns
help : string - Help string

cv languageversion
Get the C++ language version number
Returns
version : string - C++ language version

cv list [param]
Return a list of all variables or biases
Parameters
param : string - "colvars" or "biases"; default is "colvars" (optional)
Returns
list : sequence of strings - List of elements

cv listcommands
Get the list of script functions, prefixed with "cv_", "colvar_" or "bias_"
Returns
list : sequence of strings - List of commands

cv listindexfiles
Get a list of the index files loaded in this session
Returns
list : sequence of strings - List of index file names

cv listinputfiles
Get a list of all input/configuration files loaded in this session
Returns
list : sequence of strings - List of file names
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cv load <prefix>
Load data from a state file into all matching colvars and biases
Parameters
prefix : string - Path to existing state file or input prefix

cv loadfromstring <buffer>
Load state data from a string into all matching colvars and biases
Parameters
buffer : string - String buffer containing the state information

cv molid [molid]
Get or set the molecule ID on which Colvars is defined (VMD only)
Parameters
molid : integer - New molecule ID; -1 means undefined (optional)
Returns
molid : integer - Current molecule ID

cv printframe
Return the values that would be written to colvars.traj
Returns
values : string - The values

cv patchversion
Get the Colvars patch version number (used for bugfixes only)
Returns
version : string - Colvars version

cv printframelabels
Return the labels that would be written to colvars.traj
Returns
Labels : string - The labels

cv reset
Delete all internal configuration

cv resetindexgroups
Clear the index groups loaded so far, allowing to replace them
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cv save <prefix>
Change the prefix of all output files and save them
Parameters
prefix : string - Output prefix with trailing ".colvars.state" gets removed)

cv savetostring
Write the Colvars state to a string and return it
Returns
state : string - The saved state

cv targettemperature [T]
Get/set target temperature, overriding internally what the MD engine reports
Parameters
T : float - New target temperature in K (internal use) (optional)
Returns
T : float - Current target temperature in K

cv timestep [dt]
Get/set integration timestep, overriding internally what the MD engine reports
Parameters
dt : float - New integration timestep in MD engine units (optional)
Returns
dt : float - Current integration timestep in MD engine units

cv units [units]
Get or set the current Colvars unit system
Parameters
units : string - The new unit system (optional)
Returns
units : string - The current unit system

cv update
Recalculate colvars and biases

cv version
Get the Colvars version string
Returns
version : string - Colvars version
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8.2 Commands to manage individual collective variables

cv colvar name addforce <force>
Apply the given force onto this colvar (no effects outside run)
Parameters
force : float or array - Applied force; must match colvar dimensionality
Returns
force : float or array - Applied force; matches colvar dimensionality

cv colvar name communicateforces
Communicate bias forces from this colvar to atoms

cv colvar name cvcflags <flags>
Enable or disable individual components by setting their active flags
Parameters
flags : integer array - Zero/nonzero value disables/enables the CVC

cv colvar name delete
Delete this colvar, along with all biases that depend on it

cv colvar name get <feature>
Get the value of the given feature for this colvar
Parameters
feature : string - Name of the feature
Returns
state : 1/0 - State of the given feature

cv colvar name getappliedforce
Return the total of the forces applied to this colvar
Returns
force : float - Applied force; matches the colvar dimensionality

cv colvar name resetbiasforce
Return the total of the forces applied to this colvar
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cv colvar name getatomgroups
Return the atom indices used by this colvar as a list of lists
Returns
groups : array of arrays of ints - Atom indices

cv colvar name getatomids
Return the list of atom indices used by this colvar
Returns
indices : array of ints - Atom indices

cv colvar name getconfig
Return the configuration string of this colvar
Returns
conf : string - Current configuration string

cv colvar name getgradients
Return the atomic gradients of this colvar
Returns
gradients : array of arrays of floats - Atomic gradients

cv colvar name gettotalforce
Return the sum of internal and external forces to this colvar
Returns
force : float - Total force; matches the colvar dimensionality

cv colvar name getvolmapids
Return the list of volumetric map indices used by this colvar

cv colvar name help [command]
Get a help summary or the help string of one colvar subcommand
Parameters
command : string - Get the help string of this specific command (optional)
Returns
help : string - Help string

cv colvar name modifycvcs <confs>
Modify configuration of individual components by passing string arguments
Parameters
confs : sequence of strings - New configurations; empty strings are skipped

144



cv colvar name run_ave
Get the current running average of the value of this colvar
Returns
value : float or array - Averaged value; matches the colvar dimensionality

cv colvar name set <feature> <value>
Set the given feature of this colvar to a new value
Parameters
feature : string - Name of the feature
value : string - String representation of the new feature value

cv colvar name state
Print a string representation of the feature state of this colvar
Returns
state : string - The feature state

cv colvar name type
Get the type description of this colvar
Returns
type : string - Type description

cv colvar name update
Recompute this colvar and return its up-to-date value
Returns
value : float or array - Current value; matches the colvar dimensionality

cv colvar name value
Get the current value of this colvar
Returns
value : float or array - Current value; matches the colvar dimensionality

cv colvar name width
Get the width of this colvar
Returns
width : float - Value of the width

8.3 Commands to manage individual biases
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cv bias name bin
Get the current grid bin index (flattened if more than 1d)
Returns
bin : integer - Bin index

cv bias name bincount [index]
Get the number of samples at the given grid bin (1D ABF only for now)
Parameters
index : integer - Grid index; defaults to current bin (optional)
Returns
samples : integer - Number of samples

cv bias name local_sample_count [radius]
Get the number of samples around the current binsamples : integer - Number

of samples
Parameters
radius : integer - Sum over radius bins around current bin (optional)

cv bias name binnum
Get the total number of grid points of this bias (1D ABF only for now)
Returns
Bins : integer - Number of grid points

cv bias name delete
Delete this bias

cv bias name energy
Get the current energy of this bias
Returns
E : float - Energy value

cv bias name get <feature>
Get the value of the given feature for this bias
Parameters
feature : string - Name of the feature
Returns
state : 1/0 - State of the given feature
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cv bias name getconfig
Return the configuration string of this bias
Returns
conf : string - Current configuration string

cv bias name help [command]
Get a help summary or the help string of one bias subcommand
Parameters
command : string - Get the help string of this specific command (optional)
Returns
help : string - Help string

cv bias name load <prefix>
Load data into this bias
Parameters
prefix : string - Read from a file with this name or prefix

cv bias name loadfromstring <buffer>
Load state data into this bias from a string
Parameters
buffer : string - String buffer containing the state information

cv bias name save <prefix>
Save data from this bias into a file with the given prefix
Parameters
prefix : string - Prefix for the state file of this bias

cv bias name savetostring
Save data from this bias into a string and return it
Returns
state : string - The bias state

cv bias name set <feature> <value>
Set the given feature of this bias to a new value
Parameters
feature : string - Name of the feature
value : string - String representation of the new feature value
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cv bias name share
Share bias information with other replicas (multiple-walker scheme)

cv bias name state
Print a string representation of the feature state of this bias
Returns
state : string - String representation of the bias features

cv bias name type
Print the type of this bias object
Returns
type : string - Type of this bias object (e.g. metadynamics)

cv bias name update
Recompute this bias and return its up-to-date energy
Returns
E : float - Energy value
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9 Syntax changes from older versions

The following is a list of syntax changes in Colvars since its first release. Many of the older
keywords are still recognized by the current code, thanks to specific compatibility code. This is not
a list of new features: its primary purpose is to make you aware of those improvements that affect
the use of old configuration files with new versions of the code.
Note: if you are using any of the NAMD and VMD tutorials:
https://www.ks.uiuc.edu/Training/Tutorials/
please be aware that several of these tutorials are not actively maintained : for those cases, this
list will help you reconcile any inconsistencies.

• Colvars version 2016-06-09 or later (VMD version 1.9.3 or later).
The legacy keyword refPositionsGroup has been renamed fittingGroup for clarity (the
legacy version is still supported).

• Colvars version 2016-08-10 or later (VMD version 1.9.3 or later).
“System forces” have been replaced by “total forces” (see for example outputTotalForce).
See the following page for more information:
https://colvars.github.io/README-totalforce.html

• Colvars version 2017-01-09 or later (VMD version 1.9.4 or later).
A new type of restraint, harmonicWalls (see 7.10), replaces and improves upon the legacy
keywords lowerWall and upperWall: these are still supported as short-hands.

• Colvars version 2018-11-15 or later (VMD version 1.9.4 or later).
The global analysis keyword has been discontinued: specific analysis tasks are controlled
directly by the keywords corrFunc and runAve, which continue to remain off by default.

• Colvars version 2020-02-25 or later (VMD version 1.9.4 or later).
The parameter hillWidth, expressing the Gaussian width 2σ in relative units (number of grid
points), does not have a default value any more. A new alternative parameter gaussianSigmas
allows setting the σ parameters explicitly for each variable if needed.
Furthermore, to facilitate the use of other analysis tools such as for example sum_hills:
https://www.plumed.org/doc-v2.6/user-doc/html/sum_hills.html
the format of the file written by writeHillsTrajectory has also been changed to use σ in-
stead of 2σ . This change does not affect how the biasing potential is written in the state file,
or the simulated trajectory.

• Colvars version 2020-02-25 or later (VMD version 1.9.4 or later).
The legacy keywords lowerWall and upperWall of a colvar definition block do not have de-
fault values any longer, and need to be set explicitly, preferably as part of the harmonicWalls
restraint. When using an ABF bias, it is recommended to set the two walls equal to lowerBoundary
and upperBoundary, respectively. When using a metadynamics bias, it is recommended to
set the two walls strictly within lowerBoundary and upperBoundary; see 7.6.1 for details.

• Colvars version 2020-11-09 or later.
The legacy keyword disableForces for atom groups is now deprecated and will be discon-
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tinued in a future release. Atom groups now have an automated way to save computation if
forces are not used, and enabling this option otherwise would lead to incorrect behavior.
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10 Compilation notes

The Colvars module is typically built using the recipes of each supported software package: for
this reason, no installation instructions are needed, and the vast majority of the features described
in this manual are supported in the most common builds of each package.

This section lists the few cases where the choice of compilation settings affects the availability
features in the Colvars module.

• Scripting commands using the Tcl language (https://www.tcl.tk) are supported in VMD,
NAMD, and Tinker-HP. All precompiled builds of NAMD and VMD include Tcl, and it is highly
recommended to enable Tcl support in any custom build, using precompiled Tcl libraries
from the UIUC website.

• The Lepton library (https://simtk.org/projects/lepton) used to implement the customFunction
feature is currently included only in NAMD (always on), in LAMMPS (on by default) and in
the Colvars-patched GROMACS releases (but currently, not in the standard releases). For
VMD, a patch that allows to link Lepton is available.

• The Torch library is required to support the torchANN variable type, which is conditionally
compiled if a Torch library is present. In most engines, patching will be required to support
this.

• Colvars requires the C++11 language standard or higher, which is either supported (VMD)
or required (GROMACS, LAMMPS, NAMD) by all the engines. However, many of the VMD
official builds are produced on very old architectures, where C++11 features are disabled at
build time, thus limiting functionality. For details please see:
https://colvars.github.io/README-c++11.html
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replicasRegistry, 114

stepZeroData, 108
targetDistFile, 111
targetDistMinVal, 111
useGrids, 110
wellTempered, 113
writeFreeEnergyFile, 109
writeHillsTrajectory, 109
writeHistogram, 135
writePartialFreeEnergyFile, 115
writeTIPMF, 108
writeTISamples, 108

opes_metad
adaptiveSigmaStride, 118
adaptiveSigma, 118
barrier, 116
biasfactor, 117
calcWork, 119
colvars, 116
compressionThreshold, 118
epsilon, 118
explore, 118
fixedSigma, 119
gaussianSigmaMin, 117
gaussianSigma, 117
kernelCutoff, 118
multipleReplicas, 119
name, 116
neighborListNewHillReset, 118
neighborListParameters, 118
neighborList, 118
newHillFrequency, 117
noZed, 119
outputEnergy, 116
pmfColvars, 120
pmfHistoryFrequency, 120
pmfShared, 120
pmf, 120
printTrajectoryFrequency, 121
recursiveMerge, 119
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