|
| denseLayer () |
| empty constructor
|
|
| denseLayer (const std::string &weights_file, const std::string &biases_file, const std::function< double(double)> &f, const std::function< double(double)> &df) |
|
void | readFromFile (const std::string &weights_file, const std::string &biases_file) |
| read data from file
|
|
void | setActivationFunction (const std::function< double(double)> &f, const std::function< double(double)> &df) |
| setup activation function
|
|
void | compute (const std::vector< double > &input, std::vector< double > &output) const |
| compute the value of this layer
|
|
double | computeGradientElement (const std::vector< double > &input, const size_t i, const size_t j) const |
| compute the gradient of i-th output wrt j-th input
|
|
void | computeGradient (const std::vector< double > &input, std::vector< std::vector< double > > &output_grad) const |
| output[i][j] is the gradient of i-th output wrt j-th input
|
|
size_t | getInputSize () const |
| get the input size
|
|
size_t | getOutputSize () const |
| get the output size
|
|
double | getWeight (size_t i, size_t j) const |
| getter for weights and biases
|
|
double | getBias (size_t i) const |
|
|
size_t | m_input_size |
|
size_t | m_output_size |
|
std::function< double(double)> | m_activation_function |
|
std::function< double(double)> | m_activation_function_derivative |
|
std::vector< std::vector< double > > | m_weights |
| weights[i][j] is the weight of the i-th output and the j-th input
|
|
std::vector< double > | m_biases |
| bias of each node
|
|
|
static const bool | m_use_custom_activation = false |
|
◆ denseLayer()
neuralnetworkCV::denseLayer::denseLayer |
( |
const std::string & |
weights_file, |
|
|
const std::string & |
biases_file, |
|
|
const std::function< double(double)> & |
f, |
|
|
const std::function< double(double)> & |
df |
|
) |
| |
- Parameters
-
[in] | weights_file | filename of the weights file |
[in] | biases_file | filename of the biases file |
[in] | f | activation function |
[in] | df | derivative of the activation function |
The documentation for this class was generated from the following files: